全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

华南地区寒武系早期放射虫起源研究现状及讨论
Research Status and Discussion on the Origin of Early Cambrian Radiolarian in South China

DOI: 10.12677/ag.2024.144046, PP. 489-498

Keywords: 华南,寒武系早期,放射虫起源
South China
, Early Cambrian, Origin of Radiolaria

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射虫是确定沉积环境的生物标志之一,为终生浮游的单细胞原生生物,其起源和早期演化一直是热点问题,通过研究,本文综述了寒武系早期放射虫化石的研究历程,总结了在寒武系时期各位前人研究学者对于放射虫起源与演化的研究,并对其多方面可能性的推测进行综述。总结出在华南地区寒武系早期地层中确切报道的放射虫化石类型共有8种,其中已报道的放射虫化石多数属于泡沫虫目,为球形多囊虫类放射虫。随着寒武系早期放射虫不断发现,寒武系放射虫多样性的不断提高,本文推测在寒武系早期地层中,放射虫演化的方向并不是单一的,球形放射虫与Archaeospicularia放射虫很有可能分别为放射虫演化过程中两只单独的演化谱系。由于寒武系早期不同深-浅水地层产出的放射虫整体的形态大小不一,推测放射虫化石的演化也很有可能与水体氧气的含量有一定的联系,但由于放射虫生物起源的复杂性,有关放射虫形态及大小的原始形态特征的研究仍需持续下去。
Radiolarian is one of the biological markers to determine the sedimentary environment. It is a single-celled protist that is floating all its life and its origin and early evolution have always been a hot issue. Through the research, this paper reviews the research process of early Cambrian radiolarian fossils and summarizes the studies on the origin and evolution of radiolarian in the Cambrian period, and it also summarizes the conjectures of various researchers on the possibility of its multi-faceted origin structure. A total of 8 radiolarian fossil types have been reported from the early Cambrian strata in South China. Most of the reported radiolarian fossils belong to the order Spumellaria and are spherical polycysticerca. With the continuous discovery of early Cambrian radiolarians and the increasing diversity of them, this paper suggests that the direction of the evolution of radiolarians in the early Cambrian strata is not a single one, and that the radiolarians of the spheroid and the radiolarians of the Archaeospicularia may be two separate evolutionary lineages during the evolution of radiolarians, respectively. Since the overall shape and size of radiolarian produced in different deep-shallow strata in the early Cambrian are different, it is speculated that the evolution of radiolarian fossils is also likely to be related to the content of oxygen in the water body to a certain extent. However, due to the complexity of the biological origin of radiolarian, the study on the original morphological characteristics of radiolarian morphology and size needs to continue.

References

[1]  Won, M. and Below, R. (1999) Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology, 45, 325-363.
https://doi.org/10.2307/1486119
[2]  房吉闯, 吴怀春. 寒武系古丈阶和江山阶全球界线层型剖面旋回地层学研究[D]: [博士学位论文]. 北京: 中国地质大学, 2020.
[3]  Danelian, T. and Moreira, D. (2004) Palaeontological and Molecular Arguments for Theorigin of Silica-Secreting Marine Organisms. Comptes Rendus Palevol, 3, 229-236.
https://doi.org/10.1016/j.crpv.2004.01.005
[4]  Decelle, J., Suzuki, N., Mahé, F., et al. (2012) Molecular Phylogeny and Morphological Evolution of the Acantharia (Radiolaria). Protist, 163, 435-450.
https://doi.org/10.1016/j.protis.2011.10.002
[5]  冯增昭, 彭勇民, 金振奎, 等. 中国早寒武世岩相古地理[J]. 古地理学报, 2002, 4(1): 1-12.
[6]  Braun, A., Chen, J., Waloszek, D., et al. (2007) First Early Cambrian Radiolaria. Geological Society, London, Special Publications, 286, 43-149.
https://doi.org/10.1144/SP286.10
[7]  Chang, S., Feng, Q.L. and Zhang, L. (2018) New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 29, 912-919.
https://doi.org/10.1007/s12583-017-0960-0
[8]  Ma, Q.F., Feng, Q.L., Cao, W.C., et al. (2019) Radiolarian Fauna from the Chlungchussuan Shuijingtuo Formation (Cambrian Series 2) in Western Hubel Province, South China. Science China Earth Sciences, 62, 1645-1658.
https://doi.org/10.1007/s11430-018-9335-0
[9]  Wang, J. and Li, Z.X. (2003) History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122, 141-158.
https://doi.org/10.1016/S0301-9268(02)00209-7
[10]  冯增昭, 彭勇民, 金振奎, 等. 中国南方寒武纪岩相古地理[J]. 古地理学报, 2001, 3(1): 1-14.
[11]  张克信, 潘桂堂, 何卫红, 等, 中国构造-地层大区划分新方案[J]. 地球科学, 2015, 40(2): 206-233.
[12]  Jiang, G., Sohl, L.E. and Christie-Blick, N. (2003) Neoproterozoic Stratigraphic Comparison of the Lesser Himalaya (India) and Yangtze Block (South China): Paleogeographic Implications. Geology, 31, 917-920.
https://doi.org/10.1130/G19790.1
[13]  Cawood, P.A., Zhao, G., Yao, J., et al. (2018) Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186, 173-194.
https://doi.org/10.1016/j.earscirev.2017.06.001
[14]  Wang, W., Zhou, M., Yan, D. and Li, J. (2012) Depositional Age, Provenance, and Tectonic Setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Research, 192-195, 107-124.
https://doi.org/10.1016/j.precamres.2011.10.010
[15]  Zhao, G. (2015) Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27, 1173-1180.
https://doi.org/10.1016/j.gr.2014.09.004
[16]  Zhao, G. and Cawood, P.A. (2012) Precambrian Geology of China. Precambrian Research, 222-223, 13-54.
https://doi.org/10.1016/j.precamres.2012.09.017
[17]  舒良树, 于津海, 贾东, 等. 华南东段早古生代造山带研究[J]. 地质通报, 2008, 27(10): 1581-1593.
[18]  Zhang, Y., Feng, Q.L., Nakamura, Y. and Suzuki, N. (2021) Microfossils from the Liuchapo Formation: Possible Oldest Radiolarians from Deep-Water Chert and Phylogenetic Analysis. Precambrian Research, 362, Article ID: 106312.
https://doi.org/10.1016/j.precamres.2021.106312
[19]  Cayeux, L. (1894) Les Preuves De L’Existence D’Organismes dans le Terrain Pré-Cambrien, première note sur les Radiolaires Pré-Cambriens. Société Géologique de France, Bulletin, Séries 3, 22, 197-228.
[20]  David, T. and Howchin, W. (1896) Note on the Occurrence of Casts of Radiolaria in Pre-Cambrian (?) Rocks, South Australia. Proceedings of the Linnean Society of New South Wales, 21, 571-583.
https://doi.org/10.5962/bhl.part.8485
[21]  Yi, H., Zeng, Y. and Xia, W. (1994) The Ultrastructure and Origin of Upper Sinian Cherts on the Southeast Continental Margin of the Yangtze Platform. Acta Geologica Sinica, 7, 389-400.
https://doi.org/10.1111/j.1755-6724.1994.mp7004003.x
[22]  Zhang, K. and Feng, Q. (2019) Early Cambrian Radiolarians and Sponge Spicules from the Niujiaohe Formation in South China. Palaeoworld, 28, 234-242.
https://doi.org/10.1016/j.palwor.2019.04.001
[23]  Dumitrica, P. (1970) Cryptocephalic and Cryptothoracic Nassellaria in Some Mesozoic Deposits of Romania. Revue Roumaine de Géologie, Géophysique et Géographie (Série Géologie), 14, 45-124.
[24]  Pessagno, E.A. and Newport, R.L. (1972) A Technique for Extracting Radiolarian from Radiolarian Cherts. Micropaleontology, 18, 231-234.
https://doi.org/10.2307/1484997
[25]  Campbell, A.S. (1954) Radiolaria. In: Moore, R.C., Eds., Treatise on Invertebrate Paleontology. Part D-Protista 3, Geology Society of America and University of Kansas Press, New York, D11-D163.
[26]  Braun, A., Chen, J.Y., Waloszek, D., et al. (2007) Siliceous Microfossils and Biosiliceous Sedimentation in the Lowermost Cambrian of China. Geological Society, London, Special Publications, 286, 423-424.
https://doi.org/10.1144/SP286.32
[27]  冯庆来. 放射虫古生态的初步研究[J]. 地质科技情报, 1992(2): 41-46.
[28]  冯庆来, 吴俊, 张磊. 华南乐平统放射虫生物地层学研究进展[J]. 古生物学报, 2009, 48(3): 465-473.
[29]  De Wever, P., Dumitrica, P. and Caulet, J. (2001) Radiolarians in the Sedimentary Record. CRC Press, London.
https://doi.org/10.1201/9781482283181
[30]  Maletz, J. (2011) Radiolarian Skeletal Structures and Biostratigraphy in the Early Palaeozoic (Cambrian-Ordovician). Palaeoworld, 20, 116-133.
https://doi.org/10.1016/j.palwor.2010.12.007
[31]  Erwin, D.H. and Tweedt, S. (2012) Ecological Drivers of the Ediacaran-Cambrian Diversification of Metazoa. Evolutionary Ecology, 26, 417-433.
https://doi.org/10.1007/s10682-011-9505-7
[32]  Sperling, E.A., Robinson, J.M., Pisani, D. and Peterson, K.J. (2010) Where’s the Glass? Biomarkers, Molecularclocks, and Micro RNA Ssuggesta 200-Myrmissing Precambrian Fossil Record of Siliceous Sponge Spicules. Geobiology, 8, 24-36.
https://doi.org/10.1111/j.1472-4669.2009.00225.x
[33]  Obut, O. and Iwata, K. (2000) Lower Cambrian Radiolaria from the Gorny Altai, (Southern West Siberia). Novosti Paleontologiii Stratigrafi, 2-3, 33-37.
[34]  Pouille, L., Obut, O., Danelian, T. and Sennikov, N. (2011) Lower Cambrian (Botomian) Polycystine Radiolaria from the Altai Mountains (Southern Siberia, Russia). Comptes Rendus Palevol, 10, 627-633.
https://doi.org/10.1016/j.crpv.2011.05.004
[35]  Pouille, L., Danelian, T. and Maletz, J. (2014) Radiolarian Diversity Changes during the Late Cambrian-Early Ordovician Transition as Recordedin the Cow Head Group of Newfoundland (Canada). Marine Micropaleontology, 110, 25-41.
https://doi.org/10.1016/j.marmicro.2013.05.002
[36]  Deflandre, G. (1953) Radiolaires fossiles. Traité de Zoologie, 1, 389-436.
[37]  Dumitrica, P., Caridroit, M. and De Wever, P. (2000) Archaeospicularia, ordre nouveau de radiolaires: Une nouvelle étape pour la classification des radiolaires du Paléozo?que inférieur. Comptes Rendus de lAcadémie des SciencesSeries IIA—Earth and Planetary Science, 330, 563-569.
https://doi.org/10.1016/S1251-8050(00)00168-3
[38]  Won, M.Z. and Iams, W.J. (2002) Late Cambrian Radiolarian Faunas and Biostratigraphy of the Cow Head Group, Western Newfoundland. Journal Information, 76, 1-33.
https://doi.org/10.1666/0022-3360(2002)076<0001:LCRFAB>2.0.CO;2
[39]  Zhang, L., Danelian, T., Feng, Q.L., et al. (2013) On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China): Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 32, 207-217.
https://doi.org/10.1144/jmpaleo2013-003
[40]  郑宁. 湘赣南部及粤北部早古生代沉积-构造演化[D]: [博士学位论文]. 北京: 中国地质科学院, 2012.
[41]  胡杰. 桂东北较深水相前寒武纪-寒武纪之交的硅质微生物岩[J]. 微体古生物学报, 2008, 25(3): 291-305.
[42]  郑宁, 宋天锐, 李廷栋, 等. 华南造山带下寒武统和中奥陶统发现放射虫[J]. 中国地质, 2012, 39(1): 260-265.
[43]  何天辰, 凌洪飞, 陈永权, 等. 皖南休宁蓝田剖面埃迪卡拉系皮园村组硅质岩的地球化学特征及成因[J]. 高校地质学报, 2013(4): 620-633.
[44]  赵国连. 生物作用在二氧化硅聚集沉淀过程中的意义-以皖南浙西的硅岩为例[J]. 沉积学报, 1999, 17(1): 30-37.
[45]  Liu, Z., Gao, B., Zhang, Y., et al. (2017) Types and Distribution of the Shale Sedimentary Facies of the Lower Cambrian in Upper Yangtze Area, South China. Petroleum Exploration and Development, 44, 20-31.
https://doi.org/10.1016/S1876-3804(17)30004-6
[46]  Conway Morris, S. and Chen, M. (1990) Blastulospongia polytreta N. Sp., an Enigmatic Organism from the Lower Cambrian of Hubei, China. Journal of Paleontology, 64, 26-30.
https://doi.org/10.1017/S0022336000042207
[47]  Cao, W.C., Feng, Q.L. and Feng, F. (2014) Radiolarian Kalimnasphaera from the Cambrian Shuijingtuo Formation in South China. Marine Micropaleontology, 110, 3-7.
https://doi.org/10.1016/j.marmicro.2013.06.005
[48]  郑宁, 李廷栋, 丁孝忠, 等. 湘赣中、南部寒武系纽芬兰统-第二统沉积环境[J]. 地球科学,2020, 45(7): 2629-2649.
[49]  张晏. 华南寒武纪早期硅质岩中放射虫及共生微体古生物群研究[D]: [博士学位论文]. 武汉: 中国地质大学, 2021.
[50]  Aitchison, J.C., Flood, P.G. and Malpas, J. (1998) Lowermost Ordovician (Basal Tremadoc) Radiolarians from the Little Port Complex, Western Newfoundland. Geological Magazine, 135, 413-419.
https://doi.org/10.1017/S001675689800867X
[51]  Maletz, J. and Bruton, D.L. (2005) The Beothuka terranova (Radiolaria) Assemblage and Its Importance for the Understanding of Early Ordovician Radiolarian Evolution. Geological Magazine, 142, 711-721.
https://doi.org/10.1017/S0016756805001391
[52]  Won, M.Z. and Iams, W.J. (2015b) Review of the Beothuka terranova Assemblage and Characteristics of the Middle Arenig (Ordovician, Latest Floian) Radiolarian Assemblage from the Cow Head Group, Newfoundland. Neues Jahrbuch für Geologie und Pal?ontologie-Abhandlungen, 278, 1-21.
https://doi.org/10.1127/njgpa/2015/0513
[53]  Won, M. and Iams, W.J. (2011) Earliest Arenig Radiolarians from the Cow Head Group, Western Newfoundland. Journal of Paleontology, 85, 156-177.
https://doi.org/10.1666/10-102.1
[54]  Won, M. and Iams, W.J. (2015) Early/Middle Arenig (Late Floian) Radiolarian Faunal Assemblages from Cow Head Group, Western Newfoundland. Palaeontographica Abteilung A, 304, 1-63.
https://doi.org/10.1127/pala/304/2015/1
[55]  Jacot Des Combes, H. and Abelmann, A. (2009) From Species Abundance to Opal Input: Simple Geometrical Models of Radiolarian Skeletons from the Atlantic Sector of the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 56, 757-771.
https://doi.org/10.1016/j.dsr.2008.12.019
[56]  Li, C., Jin, C., Planavsky, N., et al. (2017) Coupled Oceanic Oxygenation and Metazoan Diversification during the Early-Middle Cambrian? Geology, 45, 743-746.
https://doi.org/10.1130/G39208.1
[57]  Zhang, X. and Cui, L. (2016) Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 27, 187-195.
https://doi.org/10.1007/s12583-016-0690-8
[58]  Zhang, X., Shu, D., Han, J., et al. (2014) Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 25, 896-909.
https://doi.org/10.1016/j.gr.2013.06.001
[59]  Liu, K., Feng, Q., Shen, J., et al. (2017) Increased Productivity as a Primary Driver of Marine Anoxia in the Lower Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491, 1-9.
https://doi.org/10.1016/j.palaeo.2017.11.007
[60]  Jin, C., Li, C., Algeo, T., et al. (2016) Evidence for Marine Redox Control on Spatial Colonization of Early Animals during Cambrian Age 3 (C. 521-514 Ma) in South China. Geological Magazine, 154, 1360-1370.
https://doi.org/10.1017/S0016756816001138
[61]  Zhou, C. and Jiang, S. (2009) Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 279-286.
https://doi.org/10.1016/j.palaeo.2008.10.024
[62]  Li, R., Lu, J., Zhang, S. and Lei, J.J. (1999) Organic Carbon Isotopes of the Sinian and Early Cambrian Black Shales on Yangtze Platform, China. Science in China Series D: Earth Sciences, 42, 595-603.
https://doi.org/10.1007/BF02877787

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133