In this paper we prove in a new way, the well known result, that Fermat’s equationa4 + b4 = c4, is not solvable in , when . To show this result, it suffices to prove that: , is not solvable in , (where , pairwise primes, with necessarly
References
[1]
Diophanti, A. (1670) Arithmeticorum libri sex et de numeris multangulis liber vnus: Cum commentariis C. G. Bacheti. & observationibus de Fermat; accessit doctrinae analyticae inventum novum collectum ex varijs eiusdem de Fermat epistolis; Publisher excudebat Bernardus Bosc, è regione Collegij Societatis Iesu; National Library of Naples. http://books.google.com/books?id=TbE_3aglZl4C&hl=&source=gbs_api
[2]
Euler, L. (1738) Theorematum quorundam arithmeticorum demonstrations. Novi Commentarii academiae scientiarum Petropolitanae, 10, 125-146.
[3]
Rimbeboim, P. (1999) Fermat’s Last Theorem for Amateurs. Springer-Verlag New-York Inc, New York.
[4]
Wiles, A. (1995) Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551. https://doi.org/10.2307/2118559
[5]
Ribet, K. (1990) On Modular Representations of Gal(Q=Q) Arising from Modular Forms. Inventiones Mathematicae, 100, 431-476. https://doi.org/10.1007/BF01231195
[6]
Taylor, R. and Wiles, A. (1995) Ring Theoretic Properties of Certain Hecke Algebra. Annals of Mathematics, 141, 553-572. https://doi.org/10.2307/2118560
[7]
Tafelmacher, A. (1893) Sobre la ecuacion x4 + y4 = z4. Anales De La Universidad De Chile, tomo 84, pp. 307-320. https://anales.uchile.cl/index.php/ANUC/article/view/20645
[8]
Tanoé, F.E. and Kimou, P.K. (2023) Pythagorician Divisors and Applications to Some Diophantine Equations. Advances in Pure Mathematics, 13, 35-70. https://doi.org/10.4236/apm.2023.132003
[9]
Bagnantissoun, E.T. (2018) Théorème de Terjanian: Application aux équations de Fermat. Master Thesis in Mathematic and Applications, Université Félix Houphouët BOIGNY, Côte d’Ivoire.
[10]
Andreescu, T., Andrica, D. and Cucurezeanu, I. (2010) An Introduction to Diophantine Equations. Birkhäuser, Boston. https://doi.org/10.1007/978-0-8176-4549-6
[11]
Keumean, D.L. (2021) Diviseurs Pythagoriciens appliqués à la résolution du problème de certains nombres congruent. MSc. Thesis, Université Houphouët-Boigny, Abidjan.
[12]
Carmichael, R.D. (1959) The Theory of Numbers and Diophantine Analysis. Dover Publications Inc., New York.
[13]
Rimbeboim, P. (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag New-York Inc., New York. https://doi.org/10.1007/978-1-4684-9342-9
[14]
Abdelalim, S. and Dyani, H. (2015) Caracterization of the Solution of Diophantine Equation x2 + y2 = 2z2. Gulf Journal of Mathematics, 3, 1-4.
[15]
Guy Terjanian, G. (1977) Sur l’équation x2p + y2p = z2p. Comptes rendus hebdomadaires des séances de l’Académie des sciences. Série A, Sciences mathématiques, 285, 973-975.
[16]
Kimou, P.K. and Tanoé, F.E. (2023) Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations. American Journal of Computational Mathematics, 13, 199-210. https://doi.org/10.4236/ajcm.2023.131010
[17]
Kimou, P.K. (2023) On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors. American Journal of Computational Mathematics, 13, 82-90. https://doi.org/10.4236/ajcm.2023.131002