全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat’s Theorem:a4 + b4 = c4. Part I

DOI: 10.4236/apm.2024.144017, PP. 303-319

Keywords: Factorisation in ?, Greatest Common Divisor, Pythagoras Equation, Pythagorician Triplets, Fermat's Equations, Pythagorician Divisors, Fermat's Divisors, Diophantine Equations of Degree 2, 4-Integral Closure of ? in ?

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we prove in a new way, the well known result, that Fermat’s equation a4 + b4 = c4, is not solvable in , when abc0 . To show this result, it suffices to prove that: ( F 0 ): a 1 4 + ( 2 s b 1 ) 4 = c 1 4 , is not solvable in , (where a 1 , b 1 , c 1 2+1 , pairwise primes, with necessarly

References

[1]  Diophanti, A. (1670) Arithmeticorum libri sex et de numeris multangulis liber vnus: Cum commentariis C. G. Bacheti. & observationibus de Fermat; accessit doctrinae analyticae inventum novum collectum ex varijs eiusdem de Fermat epistolis; Publisher excudebat Bernardus Bosc, è regione Collegij Societatis Iesu; National Library of Naples.
http://books.google.com/books?id=TbE_3aglZl4C&hl=&source=gbs_api
[2]  Euler, L. (1738) Theorematum quorundam arithmeticorum demonstrations. Novi Commentarii academiae scientiarum Petropolitanae, 10, 125-146.
[3]  Rimbeboim, P. (1999) Fermat’s Last Theorem for Amateurs. Springer-Verlag New-York Inc, New York.
[4]  Wiles, A. (1995) Modular Elliptic Curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551.
https://doi.org/10.2307/2118559
[5]  Ribet, K. (1990) On Modular Representations of Gal(Q=Q) Arising from Modular Forms. Inventiones Mathematicae, 100, 431-476.
https://doi.org/10.1007/BF01231195
[6]  Taylor, R. and Wiles, A. (1995) Ring Theoretic Properties of Certain Hecke Algebra. Annals of Mathematics, 141, 553-572.
https://doi.org/10.2307/2118560
[7]  Tafelmacher, A. (1893) Sobre la ecuacion x4 + y4 = z4. Anales De La Universidad De Chile, tomo 84, pp. 307-320.
https://anales.uchile.cl/index.php/ANUC/article/view/20645
[8]  Tanoé, F.E. and Kimou, P.K. (2023) Pythagorician Divisors and Applications to Some Diophantine Equations. Advances in Pure Mathematics, 13, 35-70.
https://doi.org/10.4236/apm.2023.132003
[9]  Bagnantissoun, E.T. (2018) Théorème de Terjanian: Application aux équations de Fermat. Master Thesis in Mathematic and Applications, Université Félix Houphouët BOIGNY, Côte d’Ivoire.
[10]  Andreescu, T., Andrica, D. and Cucurezeanu, I. (2010) An Introduction to Diophantine Equations. Birkhäuser, Boston.
https://doi.org/10.1007/978-0-8176-4549-6
[11]  Keumean, D.L. (2021) Diviseurs Pythagoriciens appliqués à la résolution du problème de certains nombres congruent. MSc. Thesis, Université Houphouët-Boigny, Abidjan.
[12]  Carmichael, R.D. (1959) The Theory of Numbers and Diophantine Analysis. Dover Publications Inc., New York.
[13]  Rimbeboim, P. (1979) 13 Lectures on Fermat’s Last Theorem. Springer-Verlag New-York Inc., New York.
https://doi.org/10.1007/978-1-4684-9342-9
[14]  Abdelalim, S. and Dyani, H. (2015) Caracterization of the Solution of Diophantine Equation x2 + y2 = 2z2. Gulf Journal of Mathematics, 3, 1-4.
[15]  Guy Terjanian, G. (1977) Sur l’équation x2p + y2p = z2p. Comptes rendus hebdomadaires des séances de lAcadémie des sciences. Série A, Sciences mathématiques, 285, 973-975.
[16]  Kimou, P.K. and Tanoé, F.E. (2023) Diophantine Quotients and Remainders with Applications to Fermat and Pythagorean Equations. American Journal of Computational Mathematics, 13, 199-210.
https://doi.org/10.4236/ajcm.2023.131010
[17]  Kimou, P.K. (2023) On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors. American Journal of Computational Mathematics, 13, 82-90.
https://doi.org/10.4236/ajcm.2023.131002

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133