全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Pareto遗传算法和神经网络的无人机气动布局研究
Research on UAV Aerodynamic Layout Based on Pareto Algorithm and Neural Network

DOI: 10.12677/sea.2024.132025, PP. 244-253

Keywords: 无人机,机翼形状,Pareto遗传算法,神经网络,气动布局
UAV
, Airfoil, Pareto Genetic Algorithm, Neural Network, Dynamic Layout

Full-Text   Cite this paper   Add to My Lib

Abstract:

设计了一种无人机气动布局优化方法。首先,基于流场仿真手段获取了无人机典型机翼形状设计参数以及主要气动性能指标,以此作为优化无人机气动布局的数据来源。基于得到的无人机机翼形状主要参数和性能指标,利用神经网络方法建立两者映射关系库。在给定大迎角和巡航状态下,运用Pareto遗传算法和映射关系库,以升阻比和升力系数为目标函数,得到最佳的性能参数组合,以及最佳的机翼形状数据,并基于流场仿真方法,将最优机翼形状数据输入到模型中,得到机翼形状流场压力的分布规律,验证方法的正确性。
In this paper, an optimization method of UAV aerodynamic layout is designed. Firstly, the typical design parameters of airfoil and main aerodynamic performance indexes of the UAV were obtained based on the flow field simulation method, which were used as the data source to optimize the aerodynamic layout of the UAV. Based on the main parameters and performance indexes of unmanned airfoil obtained, the mapping relationship library of them is established by using the neural network method. In the given condition of high attack angle and cruise, the optimal combination of performance parameters and airfoil data were obtained by using Pareto genetic algorithm and mapping relational library, taking lift-drag ratio and lift coefficient as objective functions. Based on the flow field simulation method, the optimal airfoil data was input into the model to obtain the distribution law of pressure in the field parameters, and the correctness of the method was verified.

References

[1]  Fitzgerald, E.J. and Mueller, T.J. (1990) Measurements in a Separation Bubble on an Airfoil Using Laser Velocimetry. AIAA Journal, 28, 584-592.
https://doi.org/10.2514/3.10433
[2]  Khan, F.A. and Mueller, T.J. (1991) Tip Vortex/Airfoil Interaction for a Low Reynolds Number Canard Wing Configuration. AIAA Journal Aircraft, 28, 181-186.
https://doi.org/10.2514/3.46010
[3]  Eppler, R. (1990) Airfoil Design and Data. Springer-Verlag, Berlin, 562.
https://doi.org/10.1007/978-3-662-02646-5
[4]  Drela, M. (1989) An Analysis and Design System for Low Reynolds Number Airfoils. In: Mueller, T.J., Ed., Low Reynolds Number Aerodynamics, Springer-Verlag, Germany, 1-12.
https://doi.org/10.1007/978-3-642-84010-4_1
[5]  雷旭升, 王挺, 梁建宏, 等. 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271.
[6]  刘斌, 刘沛清. 抗阵风载荷的小型无人机飞行器设计及相关风洞舵比较[J]. 应用力学学报, 2011, 28(6): 649-653.
[7]  约翰?安德森. 计算流体力学基础及其应用[M]. 北京: 机械工业出版社, 2010: 41-57.
[8]  任国全, 张培林, 张英堂. 装备油液智能监控原理[M]. 北京: 国防工业出版社, 2006: 112-113.
[9]  Ye, K.Q., Li, W. and Sudjianto, A. (2000) Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs. Journal of Statistical Planning and Inference, 90, 145-159.
https://doi.org/10.1016/S0378-3758(00)00105-1

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133