全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ARCADE 2 Spatial Roar, What Theory of Relation Reveals

DOI: 10.4236/jmp.2024.155032, PP. 690-719

Keywords: Arcade 2 Excess, Relativistic Bang, Theory of Relation, Lorentz Energy Transformation, Cosmic Statics, Cosmic Boom, Synchrotron Radio Background, Primordial Magnetic Fields

Full-Text   Cite this paper   Add to My Lib

Abstract:

The theory of Relation provides an explanation for the Arcade 2 excess. It assumes that the isotropic radio emission measured by the Arcade 2 Collaboration, which is 5 - 6 times brighter than the expected contributions from known extra-galactic sources, is the residue of an immense primitive energy of ordinary matter released by a relativistic bang almost 100 million years after the big bang, which gave the mass-energy the missing gravity to activate contraction. This relativistic bang, via a Lorentz energy transformation, would have released enormous energy held to be the source of the powerful radio noise detected by the NASA researchers. This transformation would have simultaneously triggered the formation of the first stars from dense gas and the reionization of less dense neutral gas. This departs from the idea that continuous reionization began after the formation of the first stars. We emphasize the importance of primordial magnetic fields, which would have generated significant density fluctuations during recombination and acted as a direct seed for cosmic structures. The first stars and galaxies were bathed in strong magnetic fields that gave rise to the radio microwave din (boom) discovered by Arcade 2. These intense magnetic fields alter the trajectory of charged particles zooming near the speed of light, triggering the space roar and emitting radiation that forms a synchrotron radio background. The theory of Relation offers an alternative to the Lambda-CDM cosmological model, which has become the standard model of the big bang, which leads straight to the vacuum catastrophe.

References

[1]  Orliac, A. (2009) Rayonnement Fossile. Science & Vie, No. 1099, 96.
[2]  Kogut, A., et al. (2006) ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission.
[3]  Singal, J., et al. (2009) The Arcade 2 Instrument.
[4]  Kogut, A., et al. (2009) Arcade 2 Observations of Galactic Radio Emission.
[5]  Caputo, A., et al. (2022) A Stimulating Explanation of the Extragalactic Radio Background.
[6]  Overbye, D. (2009) Theory Ties Radio Signal to Universe’s First Stars, New York Times, Space & Cosmos.
[7]  Fixsen, D.J., et al. (2011) The Astrophysical Journal, 734, 5.
https://doi.org/10.1088/0004-637X/734/1/5
[8]  Fixsen, D.J. and Mather, J.C. (2002) The Astrophysical Journal, 581, 817-822.
https://doi.org/10.1086/344402
[9]  Seiffert, M., et al. (2009) Interpretation of the Extragalactic Radio Background.
[10]  Trinh, X.T. (2006) Origines. Gallimard Folio Essais, Paris, 91 & 111.
[11]  Doyle, A. (2021) Dark Stars: The First Stars in the Universe. All about Space Magazine.
https://www.space.com/dark-stars-first-in-the-universe
[12]  Bagdoo, R. (2020) Journal of Modern Physics, 11, 168-195.
https://doi.org/10.4236/jmp.2020.112011
[13]  Bagdoo, R. (2022) International Journal of Fundamental Physical Sciences, 12, 35-61.
https://doi.org/10.14331/ijfps.2022.330154
[14]  Nieuwenhuizen, T.M. (2009) Europhysics Letters, 86, Article No. 59001.
https://doi.org/10.1063/1.3462666
[15]  Bagdoo, R. (2019) Journal of Modern Physics, 10, 310-343.
https://doi.org/10.4236/jmp.2019.103022
[16]  Bagdoo, R. (2020) Journal of Modern Physics, 11, 616-647.
https://doi.org/10.4236/jmp.2020.115041
[17]  Yoshida, N., Omukai, K. and Hernquist, L. (2007) The Astrophysical Journal Letters, 667, L117-L120.
https://doi.org/10.1086/522202
[18]  Parks, J. (2018) Fingerprinting the Very First Stars. Astronomy.
https://www.astronomy.com/science/fingerprinting-the-very-first-stars/
[19]  Weinberg, S. (1977) The First Three Minutes. Basic Books, New York, 73, 74, 175, 176.
[20]  Naoz, S., Noter, S. and Barkana, R. (2006) Monthly Notices of the Royal Astronomical Society Letters, 373, L98-L102.
https://doi.org/10.1111/j.1745-3933.2006.00251.x
[21]  Wall, M. (2020) The 1st Stars in the Universe Formed Earlier than Thought.
https://www.space.com/universe-first-stars-older-than-thought.html
[22]  Miralda-Escudé, J. (1999) The First Stars: Where Did They Form?
[23]  Dopita, M.A. (2006) Star Formation through Cosmic Time. Proceedings of the International Astronomical Union 2, IAU Symposium #235, Prague, 14-17 August 2006, 261-267.
https://ui.adsabs.harvard.edu/abs/2007IAUS..235..261D/abstract
https://doi.org/10.1017/S1743921306006557
[24]  Vieru, T. (2009) The First Stars Were in Binary Systems. Softpedia Space.
https://news.softpedia.com/news/The-First-Stars-Were-in-Binary-Systems-116345.shtml
[25]  Larson, R.B. and Bromm, V. (2004) Annual Review of Astronomy and Astrophysics, 42, 79-118.
http://www.astro.yale.edu/larson/papers/ARAA04.pdf
https://doi.org/10.1146/annurev.astro.42.053102.134034
[26]  Wikipedia, Chronology of the Universe.
https://en.wikipedia.org/wiki/Chronology_of_the_universe
[27]  Gnedin, N.Y. and Madau, P. (2022) Living Reviews in Computational Astrophysics, 8, Article No. 3.
https://doi.org/10.1007/s41115-022-00015-5
[28]  Wise, J.H. (2019) Cosmic Reionization.
https://doi.org/10.1080/00107514.2019.1631548
[29]  Hao, J.-M., Yuan, Y.-F. and Wang, L. (2015) MNRAS, 451, 1875-1882.
https://doi.org/10.1093/mnras/stv1064
[30]  Becker, R.H., et al. (2001) The Astronomical Journal, 122, 2850-2857.
https://doi.org/10.1086/324231
[31]  Wikipedia, Reionization.
https://en.wikipedia.org/wiki/Reionization
[32]  Ciardi, B. (2003) Intergalactic Medium Reionization after WMAP Observations. Max Planck Institute for Astrophysics, Garching.
https://wwwmpa.mpa-garching.mpg.de/HIGHLIGHT/2003/highlight0305_e.html
[33]  Sien, S. (2015) Cosmic Reionization of Hydrogen and Helium. Astrobytes.
https://astrobites.org/2015/05/22/cosmic-reionization-of-hydrogen-and-helium/
[34]  Planck Collaboration (2016) Astronomy & Astrophysics, 596, A108.
[35]  Planck Collaboration (2021) Astronomy & Astrophysics, 641, A6.
[36]  Durrive, J.-B. (2017) Quelle est l’origine des champs magnétiques dans l’Univers? Société Française de Physique, Le Rayon.
https://jeunes.sfpnet.fr/2017/11/28/quelle-est-lorigine-des-champs-magnetiques-dans-lunivers/
[37]  NASA/Goddard Space Flight Center (2023) Early Universe Crackled with Bursts of Star Formation, Webb Shows, Science News from Research Organizations.
https://www.sciencedaily.com/releases/2023/06/230605181111.htm
[38]  Durrive, J.-B., Tashiro, H., Langer, M. and Sugiyama, N. (2017) Monthly Notices of the Royal Astronomical Society, 472, 1649-1658.
https://doi.org/10.1093/mnras/stx2007
[39]  Musser, G. (2009) Mystery Cosmic Static May Cast Light on Formation of First Stars.
https://www.scientificamerican.com/article/cosmic-radio-background/
[40]  Spergel, D.N., et al. (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination
[41]  Wikipedia, Cosmic Microwave Background.
https://en.wikipedia.org/wiki/Cosmic_microwave_background
[42]  Rees, M.J. (1998) The Universe at z > 5: When and How Did the “Dark Age” End? Proceedings of the National Academy of Sciences (PNAS), 95, 47-52.
https://doi.org/10.1073/pnas.95.1.47
[43]  Miralda-Escudé, J. (2003) Science, 300, 1904-1909.
https://doi.org/10.1126/science.1085325
[44]  Dirac, P.A.M. (1928) Proceedings of the Royal Society of London A, 117, 610-624.
https://doi.org/10.1098/rspa.1928.0023
[45]  Chong, Y.D. (2021) Dirac’s Theory of the Electron. Libretexts.
https://phys.libretexts.org/Bookshelves/Quantum_Mechanics/Quantum_Mechanics_III_(Chong)/05:_Quantum_Electrodynamics/5.02:_Dirac’s_Theory_of_the_Electron
[46]  Hawking, W.H. (1988) A Brief History of Time. Bantam Books, New York, 55, 68.
[47]  Michaud, A. (2020) Journal of Modern Physics, 11, 16-80.
https://www.scirp.org/pdf/jmp_2020010915471797.pdf
https://doi.org/10.4236/jmp.2020.111003
[48]  Schrödinger, E. (1950) Space-Time Structure. Cambridge University Press, Cambridge, 1.
[49]  Bagdoo, R. (2019) Journal of Modern Physics, 10, 163-175.
https://doi.org/10.4236/jmp.2019.102013
[50]  Chelet, Y. (1961) L’énergie Nucléaire. Édition du Seuil, Paris, 95-99.
[51]  Casoli, F. (1999) Où est née la première étoile? Ciel & Espace, No. 345, 35-41.
[52]  Redshift, Wikipedia.
https://en.wikipedia.org/wiki/Redshift
[53]  Fang, K. and Linden, T. (2016) Journal of Cosmology and Astroparticle Physics, 10, 4.
https://doi.org/10.1088/1475-7516/2016/10/004
[54]  Singal, J., et al. (2010) Monthly Notices of the Royal Astronomical Society, 409, 1172-1182.
https://doi.org/10.1111/j.1365-2966.2010.17382.x
[55]  Rayne, E. (2020) Earplugs! Nasa Heard the Loudest Sound That Ever Boomed in the Universe, and It’s Screaming a Mystery. Syfy.
https://www.syfy.com/syfy-wire/space-roar-loudest-sound-in-the-universe
[56]  Crookes, D. (2022) Space Roar: The Mystery of the Loudest Sound in the Universe.
https://www.space.com/space-roar-loudest-sound-in-the-universe.html
[57]  Zweibel, E. (1998) La Recherche Hors Série, No. 1, 90-93.
[58]  Zweibel, E.G. and Heiles, C. (1997) Nature, 385, 131-136.
https://doi.org/10.1038/385131a0
[59]  Kunze, K.E. (2013) Plasma Physics and Controlled Fusion, 55, Article ID: 124026.
https://doi.org/10.1088/0741-3335/55/12/124026
[60]  Sironi, L., Comisso, L. and Golant, R. (2023) Physical Review Letters, 131, Article ID: 055201.
https://doi.org/10.1103/PhysRevLett.131.055201
[61]  Harrison, E.R. (1970) Monthly Notices of the Royal Astronomical Society, 147, 279-286.
https://doi.org/10.1093/mnras/147.3.279
[62]  Grasso, D. and Rubinstein, H.R. (2001) Magnetic Fields in the Early Universe. CERN CDS, 2-6, 131-136.
[63]  Schlickeiser, R. and Shukla, P.K. (2003) The Astrophysical Journal, 599, L57.
https://doi.org/10.1086/381246
[64]  Wasserman, I. (1978) Astrophysical Journal, 224, 337-343.
https://doi.org/10.1086/156381
[65]  Natwariya, P.K. (2021) European Physical Journal C, 81, 394.
https://doi.org/10.1140/epjc/s10052-021-09155-z
[66]  Widrow, L.M. (2002) Reviews of Modern Physics, 74, 775-823.
https://doi.org/10.1103/RevModPhys.74.775
[67]  Wikipedia, Magnetohydrodynamics.
https://en.wikipedia.org/wiki/Magnetohydrodynamics
[68]  Alfvén, H. (1942) Nature, 150, 405-406.
https://doi.org/10.1038/150405d0
[69]  Zweibel, E.G. (1988) Astrophysical Journal, 329, 384.
https://doi.org/10.1086/166384
[70]  Coles, P. (1992) Comments on Astrophysics, 16, 45.
[71]  Sethi, S.K. and Subramanian, K. (2005) Monthly Notices of the Royal Astronomical Society, 356, 778-788.
https://doi.org/10.1111/j.1365-2966.2004.08520.x
[72]  Pebbles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton, 653-654.
[73]  Fossé, D. (2020) Ciel & Espace, Hors-série, Sept./Nov., 37, 54, 75, 88.
[74]  Bagdoo, R. (2023) Journal of Modern Physics, 14, 692-721.
https://doi.org/10.4236/jmp.2023.145040
[75]  Luminet, J.-P. (2001) L’Univers Chiffonné. Éditions Fayard, folio essais, 91, 367-372, 426.
[76]  Di Valentino, E., Melchiorri, A. and Silk, J. (2019) Nature Astronomy, 4, 196-203.
https://doi.org/10.1038/s41550-019-0906-9
[77]  Bailly, S. (2017) L’expansion cosmique, plus rapide qu’on ne le pensait? Pour la Science.
https://www.pourlascience.fr/sd/cosmologie/l-expansion-cosmique-plus-rapide-qu-on-ne-le-pensait-12518.php
[78]  Robertson, B.E., et al. (2023) Nature Astronomy, 7, 611-621.
[79]  Escalòn, S. and Henarejos, P. (2004) Ciel & Espace, No. 408, 38-46.
[80]  Belloir, Y., et al. (2021) Les cahiers science & connaissance. Comprendre l’astrophysique, 38-41.
[81]  Magnan, C. (1988) La Nature sans foi ni loi. Belfond/Sciences, 182-183, 189-191.
[82]  Longair, M. (1989) The New Astrophysics. In: The New Physics, Cambridge University Press, Cambridge, 133.
[83]  Wikipedia, Hypernova.
https://en.wikipedia.org/wiki/Hypernova#:~:text=press.[1%
[84]  Zeilik, M. and Gaustad, J. (1990) Astronomy. In: The Cosmic Perspective, John Wiley & Sons, Inc., Hoboken, 636-637, 737-738.
[85]  Bertone, G. (2014) Le mystère de la matière noire. Dunod, Paris, 92, 95.
[86]  Bouquet, A. and Monnier, E. (2003) Matière sombre et énergie noire. Dunod, Paris.
[87]  Magnan, C. (2011) Le théorème du jardin. AMDS Édition, 214, 251, 252.
[88]  Larson, R.B. and Volker, B. (2009) The First Stars in the Universe. Scientific American.
https://www.scientificamerican.com/article/the-first-stars-in-the-un/
[89]  Giménez de Castro, C.G., et al. (2005) Magnetic Fields in the Universe, 784, 566.
[90]  Hoyle, F. (1957) Frontiers of Astronomy. Signet Science Library Books. New American Library, New York, 86-91.
[91]  Reeves, H. (1977) La recherche en astrophysique. Seuil-Points, Paris, 21, 22.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413