全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Floristic Composition, Population Structure, and Recruitment Status of Plant Species: A Case Study of Farmer-Managed Natural Regeneration Practices in Arid and Semi-Arid Lands in Kenya

DOI: 10.4236/ojf.2024.142010, PP. 141-154

Keywords: Farmer Managed Natural Regeneration, FMNR, Floristic Composition, Vegetation Structure, Regeneration, Biodiversity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The technique of Farmer Managed Natural Regeneration (FMNR) is being promoted as a cost-effective approach for restoring degraded arable dry lands. Its effectiveness has been observed in many countries across the globe, where it is a traditional practice, and is now being encouraged across the African continent. This study aimed to evaluate the impact of FMNR on floristic Composition, Vegetation Structure, and Regeneration Status of woody Plant Species in the severely degraded Central Rift, Kenya. The study systematically assessed how FMNR influenced species composition, vegetation structure and regeneration status from two sample plots involved in FMNR practices. Transect lines and quadrats methods were utilized to collect data, specifically regarding the floristic composition, vegetation structure, and regeneration status of woody plant species. Quadrats and sub-quadrats of varying sizes (10 m by 10 m, 5 m by 5 m, and 1 m by 1 m) were nested along the transect lines for data collection. Furthermore, measurements of tree growth and development, including root collar diameter, diameter at breast height (D130) and heights within the study blocks, were taken. The data was then analyzed using R-software. Results showed a marked progressive increase in numbers of trees, saplings, seedlings, shrubs and herbs in all FMNR sites and reductions in all non-FMNR sites. The study advocates for widespread promotion of the FMNR practice both as an environmental conservation and restoration strategy.

References

[1]  Abasse, T., & Adam, T. (2020). Diversity of Farmer-Managed Natural Woody Species and Food Security in North-Western Part of Niger. In W. Leal Filho, A. M. Azul, L. Brandli, P. G. Özuyar, & T. Wall (Eds.), Zero Hunger. Encyclopedia of the UN Sustainable Development Goals (pp. 231-240). Springer.
https://doi.org/10.1007/978-3-319-95675-6_57
[2]  Abdel Rahman, M. A. E. (2023). An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rendiconti Lincei. Scienze Fisiche e Naturali, 34, 767-808.
https://doi.org/10.1007/s12210-023-01155-3
[3]  Alanís-Rodríguez, E., Martínez-Adriano, C. A., Sanchez-Castillo, L., Rubio-Camacho, E. A., & Valdecantos, A. (2023). Land Abandonment as Driver of Woody Vegetation Dynamics in Tamaulipan Thornscrub at Northeastern Mexico. PeerJ, 11, e15438.
https://doi.org/10.7717/peerj.15438
[4]  Assis de Andrade, E., Machinski, I., Terso Ventura, A. C., Barr, S. A., Pereira, A. V., Beltrame, F. L. et al. (2023). A Review of the Popular Uses, Anatomical, Chemical, and Biological Aspects of Kalanchoe (Crassulaceae): A Genus of Plants Known as “Miracle Leaf”. Molecules, 28, Article 5574.
https://doi.org/10.3390/molecules28145574
[5]  Belayneh, H., Gebremedhin, K. G., & Egziabher, Y. G. (2021). Role of Acacia seyal on Selected Soil Properties and Sorghum Growth and Yield: A Case Study of Guba Lafto District, North Wollo, Ethiopia. International Journal of Agronomy, 2021, Article ID: 6666674.
https://doi.org/10.1155/2021/6666674
[6]  Bhattacharjya, D., Adhikari, S., Biswas, A., Bhuimali, A., Ghosh, P., & Saha, S. (2020). Ocimum Phytochemicals and Their Potential Impact on Human Health. IntechOpen.
https://doi.org/10.5772/intechopen.88555
[7]  Binam, J. N., Place, F., Djalal, A. A., & Kalinganire, A. (2017). Effects of Local Institutions on the Adoption of Agroforestry Innovations: Evidence of Farmer Managed Natural Regeneration and Its Implications for Rural Livelihoods in the Sahel. Agricultural and Food Economics, 5, Article No. 2.
https://doi.org/10.1186/s40100-017-0072-2
[8]  Chomba, S., Sinclair, F., Savadogo, P., Bourne, M., & Lohbeck, M. (2020). Opportunities and Constraints for Using Farmer Managed Natural Regeneration for Land Restoration in Sub-Saharan Africa. Frontiers in Forests and Global Change, 3, Article 571679.
https://doi.org/10.3389/ffgc.2020.571679
[9]  Deutz, A., Heal, G., Niu, R., Swanson, E., Townshend, T. et al. (2020). Financing Nature: Closing the Global Biodiversity Financing Gap. The Nature Conservancy and the Cornell Atkinson Center for Sustainability, 256.
https://www.paulsoninstitute.org/wp-content/uploads/2020/10/FINANCING-NATURE_Full-Report_Final-with-endorsements_101420.pdf
[10]  Dokata, D. I., Mburu, B. K., Macharia, G. M., Choge, S. K., Ojunga, S. O., & Kaudo, B. O. (2023). Distribution, Conservation Status and Effects of Threats on Relative Abundance of Warburgia ugandensis Tree Species. A Case Study of Katimok Forest Reserve, Kenya. East African Journal of Forestry and Agroforestry, 6, 1-17.
https://doi.org/10.37284/eajfa.6.1.1044
[11]  Etuh, M. A., Ohemu, L. T., & Pam, D. D. (2021). Lantana camara Ethanolic Leaves Extracts Exhibit Anti-Aging Properties in Drosophila melanogaster: Survival-Rate and Life Span Studies. Toxicology Research (Camb), 10, 79-83.
https://doi.org/10.1093/toxres/tfaa098
[12]  Eyasu, G., Tolera, M., & Negash, M. (2020). Woody Species Composition, Structure, and Diversity of Homegarden Agroforestry Systems in Southern Tigray, Northern Ethiopia. Heliyon, 6, e05500.
https://doi.org/10.1016/j.heliyon.2020.e05500
[13]  Fath, B. D., & Fiscus, D. (2022). Foreword. Water, Land, and Forest Susceptibility and Sustainability: Geospatial Approaches and Modeling. Elsevier.
[14]  Garrity, D., & Bayala, J. (2019). Trees Help to Increase Crop Yields. In M. van Noordwijk (Ed.), Sustainable Development through Trees on Farms: Agroforestry in Its Fifth Decade (pp. 153-174). World Agroforestry (ICRAF) Southeast Asia Regional Program.
http://apps.worldagroforestry.org/downloads/publications/pdfs/bc19015.pdf
[15]  Goda, M. M. B., Dosougi, M. A., Osman, A., & Ibrahim, A. M. (2021). Ecological Situation of Acacia tortilis Subspecies Raddiana. Case Study: In White Nile State, Sudan. Journal of Agricultural Science and Food Technology, 7, 43-47.
https://doi.org/10.17352/2455-815X.000086
[16]  Gomiero, T. (2016). Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability (Switzerland), 8, Article 281.
https://doi.org/10.3390/su8030281
[17]  Hassan, B. A., Glover, E. K., Luukkanen, O., Kanninen, M., & Jamnadass, R. (2019). Boswellia and Commiphora Species as a Resource Base for Rural Livelihood Security in the Horn of Africa: A Systematic Review. Forests, 10, Article 551.
https://doi.org/10.3390/f10070551
[18]  Kandel, M., Anghileri, D., Alare, R. S., Lovett, P. N., Agaba, G., Addoah, T., & Schreckenberg, K. (2022). Farmers’ Perspectives and Context Are Key for the Success and Sustainability of Farmer-Managed Natural Regeneration (FMNR) in Northeastern Ghana. World Development, 158, Article 106014.
https://doi.org/10.1016/j.worlddev.2022.106014
[19]  Khalwale, T., Langat, D., Abuom, P., & Okoth, S. (2018). Factors Influencing Adoption of On-Farm Tree Planting in Shinyalu Sub-County, Kakamega, Kenya. International Journal of Forestry and Horticulture, 4, 38-48.
[20]  Lohbeck, M., Albers, P., Boels, L. E., Bongers, F., Morel, S., Sinclair, F., Takoutsing, B., Vågen, T. G., Winowiecki, L. A., & Smith-Dumont, E. (2020). Drivers of Farmer-Managed Natural Regeneration in the Sahel. Lessons for Restoration. Scientific Reports, 10, Article No. 15038.
https://doi.org/10.1038/s41598-020-70746-z
[21]  Maroyi, A. (2017). Review of Ethnomedicinal Uses, Phytochemistry and Pharmacological Properties of Euclea natalensis A.DC. Molecules, 22, Article 2128.
https://doi.org/10.3390/molecules22122128
[22]  Munishi, P. K. T., Philipina, F., Temu, R. P. C., et al. (2008). Tree Species Composition and Local Use in Agricultural Landscapes of West Usambaras Tanzania. African Journal of Ecology, 46, 66-73.
http://dx.doi.org/10.1111/j.1365-2028.2008.00931.x
[23]  Mutie, F. M., Mbuni, Y. M., Rono, P. C., Mkala, E. M., Nzei, J. M., Phumthum, M., Hu, G. W., & Wang, Q. F. (2023). Important Medicinal and Food Taxa (Orders and Families) in Kenya, Based on Three Quantitative Approaches. Plants (Basel), 12, Article 1145.
https://doi.org/10.3390/plants12051145
[24]  Ngcamu, B. S., & Chari, F. (2020). Drought Influences on Food Insecurity in Africa: A Systematic Literature Review. International Journal of Environmental Research and Public Health, 17, Article 5897.
https://doi.org/10.3390/ijerph17165897
[25]  Obwocha, E., Muriuki, J., Alliance, G. E., Wanjira, E. O., & Centre, W. A. (2022). Farmer Managed Natural Regeneration in A Somali Context: Practitioners Manual.
[26]  Ojunga, S. O., Langat, D. K., Owange, K., Otuoma, J., Ayaga, G., Muskiton, K. C., Wanyiri, M., & Isack, M. (2023). The Medicinal Plants and Their Economic Value in Kakamega Forest Ecosystem: A Case Study of Sustainable Land/Forest Project in Western Kenya. Journal of Medicinal Herbs and Ethnomedicine, 9, 18-25.
https://doi.org/10.25081/jmhe.2023.v9.8193
[27]  Ojunga, S., Nyakinda, J., Okuto, E., & Mullah, J. (2019). Invasive Species Population Status Modeling Using Stage Based Matrix: Mount Elgon Ecosystem. Mathematical Theory and Modeling, 9, 27-32.
[28]  Okumu, J., Langat, D., & Ojung A, S. (2022). Determinants of Commercial Tree Growing among Smallholder Farmers in Nandi County, Kenya. East African Journal of Forestry and Agroforestry, 5, 269-285.
https://doi.org/10.37284/eajfa.5.1.939
[29]  Poorter, L., Craven, D., Jakovac, C. C., Van der Sande, M. T., Amissah, L., Bongers, F. et al. (2021). Multidimensional Tropical Forest Recovery. Science, 374, 1370-1376.
https://doi.org/10.1126/science.abh3629
[30]  Rehman, A., Rehman, A., & Ahmad, I. (2015). Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis Corniculata and Its Isolated Compounds. International Journal of Analytical Chemistry, 2015, Article ID: 842468.
https://doi.org/10.1155/2015/842468
[31]  Sbhatu, D. B., & Abraha, H. B. (2020). Preliminary Antimicrobial Profile of Solanum incanum L.: A Common Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 3647065.
https://doi.org/10.1155/2020/3647065
[32]  Tan, P. V., Mezui, C., Enow-Orock, G. E., & Agbor, G. (2013). Antioxidant Capacity, Cytoprotection, and Healing Actions of the Leaf Aqueous Extract of Ocimum suave in Rats Subjected to Chronic and Cold-Restraint Stress Ulcers. Ulcers, 2013, Article ID: 150780.
https://doi.org/10.1155/2013/150780
[33]  Tilahun, M., Kumar, P., Apindi, E., Schauer, M., Libera, J., & Lund, G. (2018). The Economics of Land Degradation Neutrality in Asia: Empirical Analyses and Policy Implications for the Sustainable Development Goal (pp. 1-143).
[34]  Vergara, N. T. (1985). Agroforestry Systems—A Primer. Unasylva, 37, 22-28.
https://doi.org/10.1177/1944451610364721
[35]  Watene, G., Yu, L., Nie, Y., Zhu, J., Ngigi, T., Nambajimana, J. D. D., & Kenduiywo, B. (2021). Water Erosion Risk Assessment in the Kenya Great Rift Valley Region. Sustainability (Switzerland), 13, Article 844.
https://doi.org/10.3390/su13020844
[36]  Zinngrebe, Y., Vidal, A., Gassner, A., Kumar, C., & Dobie, P. (2020). Trees on Farms as a Nature-Based Solution for Biodiversity Conservation in Agricultural Landscapes. ICRAF Policy Brief, No. 47.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133