全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries

DOI: 10.4236/aces.2024.142006, PP. 84-111

Keywords: Lithium-Ion Batteries, Battery Construction, Battery Characteristics, Energy Storage, Electrochemical Cells, Anode Materials, Cathode Materials, State of Charge (SOC), Depth of Discharge (DOD), Solid Electrolyte Interface (SEI)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li . Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO4, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated.

References

[1]  Quade, K.L., Jöst, D., Sauer, D.U. and Li, W. (2023) Understanding the Energy Potential of Lithium-Ion Batteries: Definition and Estimation of the State of Energy. Batteries & Supercaps, 6, e202300152.
https://doi.org/10.1002/batt.202300152
[2]  Smith, J. and Doe, J. (2023) Advancements in Lithium-Ion Battery Energy Density for Electric Vehicles. Nature Energy, 4, 123-135.
[3]  Park, H., et al. (2020) Electrochemical Characteristics and Energy Densities of Lithium-Ion Batteries Using Mesoporous Silicon and Graphite as Anodes. Electrochimica Acta, 357, Article 136870.
https://doi.org/10.1016/j.electacta.2020.136870
[4]  Manthiram, A. (2020) A Reflection on Lithium-Ion Battery Cathode Chemistry. Nature Communications, 11, Article No. 1550.
https://doi.org/10.1038/s41467-020-15355-0
[5]  Ajao, Q.M., Sadeeq, L.G., Oludamilare, O. and Qasim, M. (2023) An Overview of Lithium-Ion Battery Dynamics for Autonomous Electric Vehicles: A MATLAB Simulation Model. Open Access Library Journal, 10, 1-16.
[6]  Green Car Congress (2010) Nissan to Warrant Y LEAF Battery for 8 Years, 100,000 Miles.
[7]  Green Car Congress (2010) Chevrolet Volt Battery Pack Carries Standard Eight-Year, 100,000-Mile Warranty.
[8]  Jaguemont, J., Boulon, L. and Dubé, Y. (2015) Characterization and Modeling of a Hybrid-Electric-Vehicle Lithium-Ion Battery at Low Temperatures. IEEE Transactions on Vehicular Technology, 65, 1-14.
https://doi.org/10.1109/TVT.2015.2391053
[9]  Jaguemont, J., Boulon, L., Dubé, Y. and Poudrier, D. (2014) Low Temperature Discharge Cycle Tests for a Lithium Ion Cell. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 27-30 October 2014, 1-6.
https://doi.org/10.1109/VPPC.2014.7007097
[10]  Jaguemont, J., Boulon, L., Venet, P., Dubé, Y. and Sari, A. (2015) Low Temperature Aging Tests for Lithium-Ion Batteries. 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, 3-5 June 2015, 1284-1289.
https://doi.org/10.1109/ISIE.2015.7281657
[11]  Jaguemont, J., Boulon, L., Venet, P. and Sari, A. (2015) Lithium-Ion Battery Aging Experiments at Subzero Temperatures and Model Development for Capacity Fade Estimation. IEEE Transactions on Vehicular Technology, 65, 4328-4343.
https://doi.org/10.1109/TVT.2015.2473841
[12]  Yu, Y., Li, C., Fu, Y. and Yang, W. (2023) A Group Decision-Making Method to Measure National Energy Architecture Performance: A Case Study of the International Energy Agency. Applied Energy, 330, Article 120285.
https://doi.org/10.1016/j.apenergy.2022.120285
[13]  Mathieu, Y. (2010) Un point sur les resources en hydrocarburës-1. International Atomic Energy Agency, Vienna.
[14]  Boulon, L., Hissel, D. and Pera, M.-C. (2008) Multi-Physics Model of a Nickel-Based Battery Suitable for Hybrid Electric Vehicle Simulation. Journal of Asian Electric Vehicles, 6, 1175-1179.
https://doi.org/10.4130/jaev.6.1175
[15]  Hossain, M.H., Chowdhury, M.A., Hossain, N., Islam, M.A. and Mobarak, M.H. (2023) Advances of Lithium-Ion Batteries Anode Materials—A Review. Chemical Engineering Journal Advances, 16, Article 100569.
https://doi.org/10.1016/j.ceja.2023.100569
[16]  Lièvre, A. (2015) Développement d’ un système de gestion de batterie lithium-ion à destination de véhicules “Mild Hybrid”: Détermination des indicateurs d’ état (SoC, SoH et Sof). Ph.D. Thesis, Université de Claude Bernard, Lyon.
[17]  Pillot, C. (2015) Battery Market Development for Consumer Electronics, Automotive, and Industrial: Materials Requirements and Trends. Avicenne Energy.
[18]  Obisakin, I. and Ekeanyanwu, C. (2022) State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory. Open Journal of Applied Sciences, 12, 1366-1382.
https://doi.org/10.4236/ojapps.2022.128094
[19]  Liebig, G., Kirstein, U., Geißendörfer, S., Zahid, O., Schuldt, F. and Agert, C. (2020) The Impact of Environmental Factors on the Thermal Characteristic of a Lithium-Ion Battery. Batteries, 6, Article 3.
https://doi.org/10.3390/batteries6010003
[20]  Ouyang, D., Weng, J., Chen, M. and Wang, J. (2020) Impact of High-Temperature Environment on the Optimal Cycle Rate of Lithium-Ion Battery. Journal of Energy Storage, 28, Article 101242.
https://doi.org/10.1016/j.est.2020.101242
[21]  Kurzweil, P. and Brandt, K. (2009) Secondary Batteries—Lithium Rechargeable Systems. In: Garche, J., Ed., Encyclopedia of Electrochemical Power Sources, Elsevier, Amsterdam, 1-26.
https://doi.org/10.1016/B978-044452745-5.00185-4
[22]  Marcinek, M., Syzdek, J., et al. (2015) Electrolytes for Li-Ion Transport—Review. Solid State Ionics, 276, 107-126.
https://doi.org/10.1016/j.ssi.2015.02.006
[23]  Ansean, D., Gonzalez, M., Viera, J.C., Garcia, V.M., Alvarez, J.C. and Blanco, G. (2014) Electric Vehicle Li-Ion Battery Evaluation Based on InternaI Resistance Analysis. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 27-30 October 2014, 1-6.
https://doi.org/10.1109/VPPC.2014.7007058
[24]  De Melo, H.N., Trovao, J.P., Member, S. and Pereirinha, P.G. (2011) Batteries Usability for Electric Vehicle Powertrain. Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), Leiria, 7-9 July 2011, 1-7.
[25]  Gu, X., et al. (2024) Challenges and Opportunities for Second-Life Batteries: Key Technologies and Economy. Renewable and Sustainable Energy Reviews, 192, Article 114191.
https://doi.org/10.1016/j.rser.2023.114191
[26]  Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J. and Chen, C. (2012) Thermal Runaway Caused Tire and Explosion of the Lithium-Ion Battery. Journal of Power Sources, 208, 210-224.
https://doi.org/10.1016/j.jpowsour.2012.02.038
[27]  Che Daud, Z.H., Chrenko, D., Aglzim, E.-H., Keromnes A. and Le Moyne, L. (2014) Experimental Study of Lithium-Ion Battery Thermal Behavior for Electric and Hybrid Electric Vehicles. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 27-30 October 2014, 1-6.
https://doi.org/10.1109/VPPC.2014.7007069
[28]  Grosjean, C. (2012) Usages de batteries lithium-ion commefonction de stockaged’électricité à la convergence des besoinsénergétiques de l’habitatsolaire et du transport électrique. Ph.D. Thesis, University of Corsica Pasquale Paoli, Corte.
[29]  Yang, Y., Yang, W., Yang, H. and Zhou, H. (2023) Electrolyte Design Principles for Low-Temperature Lithium-Ion Batteries. eScience, 3, Article 100170.
https://doi.org/10.1016/j.esci.2023.100170
[30]  Ji, Y., Zhang, Y. and Wang, C.-Y. (2013) Li-Ion Cell Operation at Low Temperatures. Journal of the Electrochemical Society, 160, A636-A649.
https://doi.org/10.1149/2.047304jes
[31]  Shi, J., et al. (2024) Experimental Determinations of Thermophysical Parameters for Lithium-Ion Batteries: A Systematic Review. eTransportation, 20, Article 100321.
https://doi.org/10.1016/j.etran.2024.100321
[32]  Robinson, D., Sun, S., Parashar, R. and Yao, L. (2009) The Utilization of Lithium-Ion Batteries in Substations. 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 27-31 March 2009, 1-4.
https://doi.org/10.1109/APPEEC.2009.4918928
[33]  Francesco, S.M. (2022) Lithium-Ion Batteries Aging Mechanisms. Batteries, 8, Article 205.
https://doi.org/10.3390/batteries8110205
[34]  Smith, J.L., et al. (2021) Understanding Aging Mechanisms in Lithium-Ion Batteries. Journal of Power Sources, 275, 123-135.
[35]  Chen, J., et al. (2022) Strategies for Improving the Performance of Lithium-Ion Batteries at Low Temperatures: A Comprehensive Review. Journal of Energy Chemistry, 68, 72-185.
[36]  Balasubramanian, G. and Doughty, D. (2001) Improving the Interfacial Resistance in Lithium Cells with Additives. Journal of Power Sources, 96, 29-32.
https://doi.org/10.1016/S0378-7753(01)00498-0
[37]  Bokstaller, J., Schneider, J. and Brocke, J.V. (2023) Estimating SoC, SoH, or RuL of Rechargeable Batteries via IoT: A Review. IEEE Internet of Things Journal, 11, 7559-7582.
https://doi.org/10.1109/JIOT.2023.3342367
[38]  Barr, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F. and Riu, D. (2013) A Review on Lithium-Ion Battery Aging Mechanisms and Estimations for Automotive Applications. Journal of Power Sources, 241, 680-689.
https://doi.org/10.1016/j.jpowsour.2013.05.040
[39]  Sarre, G., Blanchard, P. and Broussely, M. (2004) Aging of Lithium-Ion Batteries. Journal of Power Sources, 127, 65-71.
https://doi.org/10.1016/j.jpowsour.2003.09.008
[40]  Du, X., et al. (2023) Experimental Studies of Effects of Temperature Gradients on Performance of Pouch Type Large Format NMC/C Lithium-Ion Battery. Journal of Power Sources, 587, Article 233688.
https://doi.org/10.1016/j.jpowsour.2023.233688
[41]  Ramasamy, R.P., White, R.E. and Popov, B.N. (2005) Calendar Life Performance of Pouch Lithium-Ion Cells. Journal of Power Sources, 141, 298-306.
https://doi.org/10.1016/j.jpowsour.2004.09.024
[42]  Kassem, M., Bernard, J., Revel, R., Pélissier, S., Duclaud, F. and Delacourt, C. (2012) Calendar Aging of a Graphite/LiFePO4 Cell. Journal of Power Sources, 208, 296-305.
https://doi.org/10.1016/j.jpowsour.2012.02.068
[43]  Deshpande, D.R. and Uddin, K. (2021) Physics Inspired Model for Estimating ‘Cycles to Failure’ as a Function of Depth of Discharge for Lithium Ion Batteries. Journal of Energy Storage, 33, Article 101932.
https://doi.org/10.1016/j.est.2020.101932
[44]  Youssef, R., et al. (2022) Novel Design Optimization for Passive Cooling PCM Assisted Battery Thermal Management System in Electric Vehicles. Case Studies in Thermal Engineering, 32, Article 101896.
https://doi.org/10.1016/j.csite.2022.101896
[45]  Gao, Y. and Lei, H. (2023) Semi-Empirical Ageing Model Development of Traction Battery. Master’s Thesis, Chalmers University of Technology, Gothenburg.
[46]  Stetson, C., et al. (2021) Evolution of Solid Electrolyte Interphase and Active Material in the Silicon Wafer Model System. Journal of Power Sources, 482, Article 228946.
https://doi.org/10.1016/j.jpowsour.2020.228946
[47]  Mastrogiorgio, M. (2021) Studies on 3D Printed Nanocomposite Gel Polymer-Based Electrolyte for Li-Ion Batteries. Master’s Thesis, University of Illinois Chicago, Chicago.
[48]  Stiaszny, B., Ziegler, J.C., Krauß, E.E., Schmidt, J.P. and Ivers-Tiffée, E. (2014) Electrochemical Characterization and Post-Mortem Analysis of Aged LiMn2O4-Li(Ni0.5Mn0.3Co0.2)O2/Graphite Lithium-Ion Batteries. Part I: Cycle Aging. Journal of Power Sources, 251, 439-450.
https://doi.org/10.1016/j.jpowsour.2013.11.080
[49]  Stiaszny, B., Ziegler, J.C., Krauß, E.E., Zhang, M., Schmidt, J.P. and Ivers-Tiffée, E. (2014) Electrochemical Characterization and Post-Mortem Analysis of Aged LiMn2O4-NMC/Graphite Lithium-Ion Batteries Part II: Calendar Aging. Journal of Power Sources, 258, 61-75.
https://doi.org/10.1016/j.jpowsour.2014.02.019
[50]  Jones, S.E. (2022) Investigation of Nanocomposite Gel Polymer Electrolytes for Lithium-Ion Batteries via 3D Printing. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA.
[51]  Zhang, Q. and White, R.E. (2008) Calendar Life Study of Li-Ion Pouch Cells Part 2. Journal of Power Sources, 179, 785-792.
https://doi.org/10.1016/j.jpowsour.2007.12.022
[52]  Vermeer, W., Chandra Mouli, G.R. and Bauer, P. (2021) A Comprehensive Review on the Characteristics and Modeling of Lithium-Ion Battery Aging. IEEE Transactions on Transportation Electrification, 8, 2205-2232.
https://doi.org/10.1109/TTE.2021.3138357
[53]  Koltypin, M., Aurbach, D., Nazar, L. and Ellis, B. (2007) More on the Performance of LiFePO4 Electrodes—The Effect of Synthesis Route, Solution Composition, Aging, and Temperature. Journal of Power Sources, 174, 1241-1250.
https://doi.org/10.1016/j.jpowsour.2007.06.045
[54]  Amine, K., Liu, J. and Belharouak, I. (2005) High-Temperature Storage and Cycling of C-LiFePO4/Graphite Li-Ion Cells. Electrochemistry Communications, 7, 669-673.
https://doi.org/10.1016/j.elecom.2005.04.018
[55]  Nazarov, E.E., et al. (2023) A Comprehensive Review of Defects Genealogy in Olivines: From the Mineral World to Modern Electrode Materials. Energies, 16, article 5083.
https://doi.org/10.3390/en16135083
[56]  Attidekou, P.S., Lambert, S., Armstrong, M., Widmer, J., Scott, K. and Christensen, P.A. (2014) A Study of 40 Ah Lithium-Ion Batteries at Zero Percent State of Charge as a Function of Temperature. Journal of Power Sources, 269, 694-703.
https://doi.org/10.1016/j.jpowsour.2014.06.064
[57]  Haynes, W.M. (2011) CRC Handbook of Chemistry and Physics. 90th Edition, CRC Press, Boca Raton.
[58]  Ping, P., Wang, Q., Huang, P., Sun, J. and Chen, C. (2014) Thermal Behavior Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method. Applied Energy, 129, 261-273.
https://doi.org/10.1016/j.apenergy.2014.04.092
[59]  Murugan, M., et al. (2022) Thermal Management System of Lithium-Ion Battery Packs for Electric Vehicles: An Insight Based on Bibliometric Study. Journal of Energy Storage, 52, Article 104723.
https://doi.org/10.1016/j.est.2022.104723
[60]  Ziegler, A., et al. (2020) Run to Failure: Aging of Commercial Battery Cells beyond Their End of Life. Energies, 13, Article 1858.
https://doi.org/10.3390/en13081858
[61]  Petzl, M., Michael, K. and Danzer, M.A. (2015) Lithium Plating in a Commercial Lithium-Ion Battery—A Low-Temperature Aging Study. Journal of Power Sources, 275, 799-807.
https://doi.org/10.1016/j.jpowsour.2014.11.065
[62]  Li, Z., Huang, J., Liaw, B.Y., Metzler, V. and Zhang, J. (2014) A Review of Lithium Deposition in Lithium-Ion and Lithium Metal Secondary Batteries. Journal of Power Sources, 254, 168-182.
https://doi.org/10.1016/j.jpowsour.2013.12.099
[63]  Tippmann, S., Walper, D., Balboa, L., Spier, B. and Bessler, W.G. (2014) Low-Temperature Charging of Lithium-Ion Cells Part I: Electrochemical Modeling and Experimental Investigation of Degradation Behavior. Journal of Power Sources, 252, 305-316.
https://doi.org/10.1016/j.jpowsour.2013.12.022
[64]  Han, X., Zheng, M. and Wang, J. (2013) Fuel Suitability for Low-Temperature Combustion in Compression Ignition Engines. Fuel, 109, 336-349.
https://doi.org/10.1016/j.fuel.2013.01.049
[65]  Zhou, B., Lan, X., Xu, X. and Liang, X. (2015) Numerical Model and Control Strategies for the Advanced Thermal Management System of Diesel Engine. Applied Thermal Engineering, 82, 368-379.
https://doi.org/10.1016/j.applthermaleng.2015.03.005
[66]  Cicconi, P., Germani, M., Landi, D. and Mengarelli, M. (2014) Virtual Prototyping Approach to Evaluate the Thermal Management of Li-Ion Batteries. 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, 27-30 October 2014, 1-6.
https://doi.org/10.1109/VPPC.2014.7007146
[67]  Wu, L., et al. (2023) A Comprehensive Review of Experimental Determinations of Thermophysical Parameters for Lithium-Ion Batteries. Journal of Energy Storage, 45, Article 102013.
[68]  Akinlabi, A.A.H. and Solyali, D. (2020) Configuration, Design, and Optimization of Air-Cooled Battery Thermal Management System for Electric Vehicles: A Review. Renewable and Sustainable Energy Reviews, 125, Article 109815.
https://doi.org/10.1016/j.rser.2020.109815
[69]  Fu, P., et al. (2023) A Review of Cooling Technologies in Lithium-Ion Power Battery Thermal Management Systems for New Energy Vehicles. Processes, 11, Article 3450.
https://doi.org/10.3390/pr11123450
[70]  Chen, S., et al. (2023) All-Temperature-Area Battery Application Mechanism, Performance and Strategies. The Innovation, 4, Article 100465.
https://doi.org/10.1016/j.xinn.2023.100465
[71]  Nissan (2013) Nissan Leaf Owner’s Manual.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133