|
内蒙古地区二氧化碳柱浓度时空分布特征分析
|
Abstract:
为厘清内蒙古地区XCO2时空分布及其源汇特征,本研究基于GOSAT卫星的二氧化碳柱浓度(XCO2)官方L2数据产品,运用反距离权重(IDW)方法对内蒙古地区进行XCO2空间插值,研究2019年内蒙古自治区以及各盟市XCO2空间分布和季节变化特征,对影响XCO2分布的驱动因素进行分析。结果表明:基于IDW方法插值结果与观测结果误差大部分处于±1 ppm之间,模拟结果和观测结果有较好的一致性;在内蒙古XCO2时空分布特征方面,浓度高值出现在内蒙古中部、西部以及东北部地区,而北部接壤蒙古国的地区XCO2浓度相对较低;内蒙古自治区XCO2年均值为407 ppm,春、夏、秋、冬季XCO2均值统计分别为 409.32 ppm、403.6 ppm、405.57 ppm、408.44 ppm,东部地区相比西部地区季节差异更明显,呈现出冬春季高、夏秋季低的分布特征;按盟市统计结果显示,呼、包、鄂等经济水平相对较高地区XCO2浓度较高,锡林郭勒盟、巴彦淖尔市等人口分布较少地区XCO2浓度相对较低。
In order to clarify the spatial and temporal distribution of XCO2 and its source and sink characteristics in Inner Mongolia, based on the official L2 product of carbon dioxide column concentration (XCO2) of GOSAT satellite. This study used the inverse distance weight (IDW) method to interpolate XCO2 in Inner Mongolia, qualified the spatial distribution and seasonal variation characteristics of XCO2 in Inner Mongolia Autonomous Region and its cities in 2019, and analyzed the driving factors affecting the distribution of XCO2. The results showed that most of the errors between the interpolation results based on the IDW method and the observed values are around ±1 ppm, and the simulation results are in good agreement with the observed results. In terms of the spatial and temporal distribution characteristics of XCO2, the high concentration appeared in the central, western and northeastern regions of Inner Mongolia, while the XCO2 concentration in the northern region bordering Mongolia was relatively low. The annual average value of XCO2 in Inner Mongolia Autonomous Region is 407 ppm. The average values of XCO2 in spring, summer, autumn and winter are 409.32 ppm, 403.6 ppm, 405.57 ppm and 408.44 ppm, respectively. The seasonal difference in the eastern region is more obvious than that in the western region, showing the distribution characteristics of high in winter and spring and low in summer and autumn. According to the statistical results of the league city, the XCO2 in the relatively high economic level areas such as Hohhot, Baotou and Erdos is higher, and the XCO2 in the sparsely populated areas such as Xilin Gol League and Bayan Nur City is relatively low.
[1] | 邓安健, 郭海波, 胡洁, 等. GOSAT卫星数据监测中国大陆上空CO2浓度时空变化特征[J]. 遥感学报, 2020, 24(3): 319-325. |
[2] | 夏玲君, 刘立新, 李柏贞, 等. 我国中部地区大气CO2柱浓度时空分布[J]. 中国环境科学, 2018, 38(8): 2811-2819. |
[3] | Lv, Z., Shi, Y., Zang, S., et al. (2020) Spatial and Temporal Variations of Atmospheric CO2 Concentration in China and Its Influencing Factors. Atmosphere, 11, 231. https://doi.org/10.3390/atmos11030231 |
[4] | 莫露, 巫兆聪, 张熠. 中国XCO2时空分布与影响因素分析[J]. 中国环境科学, 2021, 41(6): 2562-2570. |
[5] | Cao, L., Chen, X., Zhang, C., et al. (2017) The Temporal and Spatial Distributions of the Near-Surface CO2 Concentrations in Central Asia and Analysis of Their Controlling Factors. Atmosphere, 8, 85. https://doi.org/10.3390/atmos8050085 |
[6] | 何江浩, 蔡玉林, 秦鹏. 二氧化碳的时空变化规律与影响因素分析[J]. 科学通报, 2020, 65(Z1): 194-202. |
[7] | 侯艳芳. 基于遥感的中国大气CO2浓度时空分布及影响因素研究[D]: [博士学位论文]. 北京: 中国科学院大学, 2013. |
[8] | 章育仲, 袁凤杰. 全球大气监测网与我国监测站网[J]. 气象科技, 2002(1): 36, 57-59. |
[9] | 陈良富, 张莹, 邹铭敏, 等. 大气CO2浓度卫星遥感进展[J]. 遥感学报, 2015(1): 1-11. |
[10] | Falahatkar, S., Mousavi, S.M. and Farajzadeh, M. (2017) Spatial and Temporal Distribution of Carbon Dioxide Gas Using GOSAT Data over IRAN. Environmental Monitoring and Assessment, 189, Article No. 627. https://doi.org/10.1007/s10661-017-6285-8 |
[11] | 穆少杰, 李建龙, 陈奕兆, 刚成诚, 周伟, 居为民. 2001~2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268. |
[12] | 苏日罕, 郭恩亮, 王永芳, 等. 1982-2020年内蒙古地区极端气候变化及其对植被的影响[J]. 生态学报, 2023, 43(1): 419-431. |
[13] | Te, T., Bagan, H., Che, M., et al. (2023) Spatiotemporal Variability of Near-Surface CO2 and Its Affecting Factors over Mongolia. Environmental Research, 236, Article 116796. https://doi.org/10.1016/j.envres.2023.116796 |
[14] | 葛钰洁, 肖钟湧. 基于GOSAT卫星的中国CO2浓度时空特征分析[J]. 中国环境监测, 2022, 38(5): 96-108. |
[15] | 杨晓钰, 王中挺, 潘光, 等. 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581-597. |
[16] | 内蒙古自治区2019年国民经济和社会发展统计公报[EB/OL]. https://tj.nmg.gov.cn/datashow/easyquery/easyquery.htm?cn=B0103, 2024-01-25. |