全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土壤节肢动物的生态指示作用及其在城市生态系统中的应用综述
Review of the Ecological Indication of Soil Arthropods and Its Application in Urban Ecosystems

DOI: 10.12677/gser.2024.132041, PP. 423-433

Keywords: 土壤节肢动物,生态指示作用,城市生态系统
Soil Arthropod
, Ecological Indication, Urban Ecosystem

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着城市化的不断发展,城市土壤生态环境不断恶化,需要得到进一步的指示预警。本研究基于土壤节肢动物的生态指示作用,介绍了土壤节肢动物群落特征和功能特征的特点、影响因素和在自然/半自然生态系统的应用优势和不确定性,探讨了其指示城市土壤生态系统健康的潜力和可能存在的问题,并提出建议,为同类研究和城市土壤生态治理提供参考。
With the continuous development of urbanization, urban soil ecosystems are deteriorating and need to be further indicated for early warning. Based on the ecological indication of soil arthropods, this study introduces the characteristics and influencing factors of soil arthropod community features and functional characteristics, and the advantages and uncertainties of their application in natural/semi-natural ecosystems, explores their potential and possible problems in indicating the health of urban soil ecosystems, and makes recommendations to provide reference for similar studies and urban soil ecological management.

References

[1]  United Nations (2018) World Urbanization Prospects, the 2018 Revision.
https://desapublications.un.org/publications/2018-revision-world-urbanization-prospects
[2]  Bradshaw, A.D. (2003) Natural Ecosystems in Cities: A Model for Cities as Ecosystems. In: Berkowitz, A.R., Ed., Understanding Urban Ecosystems, Springer, New York, 77-94.
https://doi.org/10.1007/0-387-22615-X_6
[3]  Hruska, K. (2006). Notes on the Evolution and Organization of the Urban Ecosystem. Urban Ecosystems, 9, 291-298.
https://doi.org/10.1007/s11252-006-0006-3
[4]  Forman, R.T.T. (2009) Urban Ecology—Science of cities. Cambridge University Press, Cambridge.
[5]  Jim, C.Y. (1998) Urban Soil Characteristics and Limitations for Landscape Planting in Hong Kong. Landscape and Urban Planning, 40, 235-249.
https://doi.org/10.1016/S0169-2046(97)00117-5
[6]  Wei, B. and Yang, L. (2010) A Review of Heavy Metal Contaminations in Urban Soils, Urban Road Dusts and Agricultural Soils from China. Microchemical Journal, 94, 99-107.
https://doi.org/10.1016/j.microc.2009.09.014
[7]  Jones, K.C. and de Voogt, P. (1999) Persistent Organic Pollutants (POPs): State of the Science. Environmental Pollution, 100, 209-221.
https://doi.org/10.1016/S0269-7491(99)00098-6
[8]  Zeng, F., Cui, K., Xie, Z., Wu, L., Liu, M., Sun, G., Lin, Y., Luo, D. and Zeng, Z. (2008) Phthalate Esters (PAEs): Emerging Organic Contaminants in Agricultural Soils in Peri-Urban Areas around Guangzhou, China. Environmental Pollution, 156, 425-434.
https://doi.org/10.1016/j.envpol.2008.01.045
[9]  Faeth, S.H., Bang, C. and Saari, S. (2011) Urban Biodiversity: Patterns and Mechanisms. Annals of the New York Academy of Sciences, 1223, 69-81.
https://doi.org/10.1111/j.1749-6632.2010.05925.x
[10]  Jones, E.L. and Leather, S.R. (2012) Invertebrates in Urban Areas: A Review. European Journal of Entomology, 109, 463-478.
https://doi.org/10.14411/eje.2012.060
[11]  Lepczyk, C.A., Aronson, M.F.J., Evans, K.L., Goddard, M.A., Lerman, S.B. and Macivor, J.S. (2017) Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. Bioscience, 67, 799-807.
https://doi.org/10.1093/biosci/bix079
[12]  Wall, D.H., Nielsen, U.N. and Six, J. (2015) Soil Biodiversity and Human Health. Nature, 528, 69-76.
https://doi.org/10.1038/nature15744
[13]  Steffan, J.J., Brevik, E.C., Burgess, L.C. and Cerda, A. (2018) The Effect of Soil on Human Health: An Overview. European Journal of Soil Science, 69, 159-171.
https://doi.org/10.1111/ejss.12451
[14]  Brevik, E.C., Steffan, J.J., Rodrigo-Comino, J., Neubert, D., Burgess, L.C. and Cerda, A. (2019) Connecting the Public with Soil to Improve Human Health. European Journal of Soil Science, 70, 898-910.
https://doi.org/10.1111/ejss.12764
[15]  Pepper, I.L., Gerba, C.P., Newby, D.T. and Rice, C.W. (2009) Soil: A Public Health Threat or Savior? Critical Reviews in Environmental Science and Technology, 39, 416-432.
https://doi.org/10.1080/10643380701664748
[16]  Guilland, C., Maron, P.A., Damas, O. and Ranjard, L. (2018) Biodiversity of Urban Soils for Sustainable Cities. Environmental Chemistry Letters, 16, 1267-1282.
https://doi.org/10.1007/s10311-018-0751-6
[17]  Li, G., Sun, G.X., Ren, Y., Luo, X.S. and Zhu, Y.G. (2018) Urban Soil and Human Health: A Review. European Journal of Soil Science, 69, 196-215.
https://doi.org/10.1111/ejss.12518
[18]  McGeoch, M.A. (1998) The Selection, Testing and Application of Terrestrial Insects as Bioindicators. Biological Reviews, 73, 181-201.
https://doi.org/10.1017/S000632319700515X
[19]  邵元虎, 张卫信, 刘胜杰, 等. 土壤动物多样性及其生态功能[J]. 生态学报, 2015, 35(20): 6614-6625.
[20]  殷秀琴, 宋博, 董炜华, 等. 我国土壤动物生态地理研究进展[J]. 地理学报, 2010, 65(1): 91-102.
[21]  Santorufo, L., Van Gestel, C.A.M., Rocco, A., et al. (2012) Soil Invertebrates as Bioindicators of Urban Soil Quality. Environmental Pollution, 161, 57-63.
https://doi.org/10.1016/j.envpol.2011.09.042
[22]  van Straalen, N.M. (1998) Evaluation of Bioindicator Systems Derived from Soil Arthropod Communities. Applied Soil Ecology, 9, 429-437.
https://doi.org/10.1016/S0929-1393(98)00101-2
[23]  Neher, D.A. (2001) Role of Nematodes in Soil Health and Their Use as Indicators. Journal of Nematology, 33, 161-168.
[24]  Heink, U. and Kowarik, I. (2010) What Are Indicators? On the Definition of Indicators in Ecology and enviroNmental Planning. Ecological Indicators, 10, 584-593.
https://doi.org/10.1016/j.ecolind.2009.09.009
[25]  Yang, W., Wang, R., Zhou, C. and Li, F. (2009) Distribution and Health Risk Assessment of Organochlorine Pesticides (OCPs) in Industrial Site Soils: A Case Study of Urban Renewal in Beijing, China. Journal of Environmental Sciences, 21, 366-372.
https://doi.org/10.1016/S1001-0742(08)62278-0
[26]  武海涛, 吕宪国, 杨青, 等. 土壤动物主要生态特征与生态功能研究进展[J]. 土壤学报, 2006, 43(2): 314-323.
[27]  李进, 柯欣, 李柱, 等. 铅锌矿区周边农田土壤跳虫群落特征与重金属污染的关联[J]. 土壤学报, 2021, 58(3): 732-743.
[28]  Melekhina, E.N., Belykh, E.S., Markarova, M.Y., et al. (2021) Soil Microbiota and Microarthropod Communities in Oil Contaminated Sites in the European Subarctic. Scientific Reports, 11, Article No. 19620.
https://doi.org/10.1038/s41598-021-98680-8
[29]  N’Dri, J.K., Seka, F.A., Pokou, P.K., N’Da, R.A.G. and Lagerlof, J. (2017) Abundance and Diversity of Soil Mite (Acari) Communities after Conversion of Tropical Secondary Forest into Rubber Plantations in Grand-Lahou, C?te d’Ivoire. Ecological Research, 32, 909-919.
https://doi.org/10.1007/s11284-017-1499-3
[30]  Rodgers, D., McPhee, J., Aird, P. and Corkrey, R. (2018) Soil Arthropod Responses to Controlled Traffic in Vegetable Production. Soil and Tillage Research, 180, 154-163.
https://doi.org/10.1016/j.still.2018.03.002
[31]  Nkem, J.N., de Bruyn, L.L. and King, K. (2020) The Effect of Increasing Topsoil Disturbance on Surface-Active Invertebrate Composition and Abundance under Grazing and Cropping Regimes on Vertisols in North-West New South Wales, Australia. Insects, 11, Article 237.
https://doi.org/10.3390/insects11040237
[32]  Elo, R.A. and Sorvari, J. (2019) The Impacts of Forest Clear Felling on the Oribatid Mite Fauna Inhabiting Formica aquilonia Nest Mounds. European Journal of Soil Biology, 94, 101-103.
https://doi.org/10.1016/j.ejsobi.2019.103101
[33]  Kohyt, J. and Skuba?a, P. (2020) Oribatid Mite (Acari: Oribatida) Communities Reveal the Negative Impact of the Red Oak (Quercus rubra L.) on Soil Fauna in Polish Commercial Forests. Pedobiologia, 79, Article ID: 150594.
https://doi.org/10.1016/j.pedobi.2019.150594
[34]  Winck, B.R., Rigotti, V.M. and Saccol de Sá, E.L. (2019) Effects of Different Grazing Intensities on the Composition and Diversity of Collembola Communities in Southern Brazilian Grassland. Applied Soil Ecology, 144, 98-106.
https://doi.org/10.1016/j.apsoil.2019.07.003
[35]  Machado, J.D., Oliveira, L.C.I., Santos, J.C.P., Paulino, A.T. and Baretta, D. (2019) Morphological Diversity of Springtails (Hexapoda: Collembola) as Soil Quality Bioindicators in Land Use Systems. Biota Neotropica, 19, 618-623.
https://doi.org/10.1590/1676-0611-bn-2018-0618
[36]  Dopheide, A., Makiola, A., Orwin, K.H., Holdaway, R.J., Wood, J.R. and Dickie, I.A. (2020) Rarity Is a More Reliable Indicator of Land-Use Impacts on Soil Invertebrate Communities than Other Diversity Metrics. eLife, 9, 527-534.
https://doi.org/10.7554/eLife.52787
[37]  van der Merwe, S.S., Swart, V.R., Bredenhand, E. and Haddad, C.R. (2020) Soil-Dwelling Arthropods as Indicators of Erosion in a South African Grassland Habitat. Pedobiologia, 80, Article ID: 150647.
https://doi.org/10.1016/j.pedobi.2020.150647
[38]  Cardoso, P., Rigal, F., Fattorini, S., Terzopoulou, S. and Borges, P.A.V. (2013) Integrating Landscape Disturbance and Indicator Species in Conservation Studies. PLOS ONE, 8, e63294.
https://doi.org/10.1371/journal.pone.0063294
[39]  Barbosa, A.M., Fontaneto, D., Marini, L. and Pautasso, M. (2010) Is the Human Population a Large-Scale Indicator of the Species Richness of Ground Beetles? Animal Conservation, 13, 432-441.
https://doi.org/10.1111/j.1469-1795.2010.00363.x
[40]  Potapov, M.B. (2001) Isotomidae. In: Dunger, W., Ed., Synopses on Palaearctic Collembola, Abhandlungen und Berichte des Naturkundemuseums, G?rlitz, 603 p.
[41]  Cuchta, P., Miklisova, D. and Kovac, L. (2019) The Succession of Soil Collembola Communities in Spruce Forests of the High Tatra Mountains Five Years after a Windthrow and Clear-Cut Logging. Forest Ecology and Management, 433, 504-513.
https://doi.org/10.1016/j.foreco.2018.11.023
[42]  Gwiazdowicz, D.J. (2007) Ascid Mites (Acari, Gamasina) from Selected Forest Ecosystems and Microhabitats in Poland. University Augusta Cieszkowskiego, Poznan.
[43]  Apostu, I.M., Faur, F. and Laz?r, M. (2016) Identifcation and Assessment of the Environmental Impact Generated by the Implementation of Certej Mining Project. Research Journal of Agricultural Science, 48, 254-264.
[44]  Hogervorst, R.F., Verhoef, H.A., Straalen, N.M.V.J.B. and Soils, F.O. (1993) Five-Year Trends in Soil Arthropod Densities in Pine Forests with Various Levels of Vitality. Biology and Fertility of Soils, 15, 189-195.
https://doi.org/10.1007/BF00361610
[45]  Rousseau, L., Venier, L., Aubin, I., Gendreau-Berthiaume, B., Moretti, M., Salmon, S. and Handa, I.T. (2019) Woody Biomass Removal in Harvested Boreal Forest Leads to a Partial Functional Homogenization of Soil Mesofaunal Communities Relative to Unharvested Forest. Soil Biology & Biochemistry, 133, 129-136.
https://doi.org/10.1016/j.soilbio.2019.02.021
[46]  Cuchta, P., Miklisova, D. and Kovac, L.U. (2012) Changes within Collembolan Communities in Windthrown European Montane Spruce Forests 2 Years after Disturbance by Fire. Annals of Forest Science, 69, 81-92.
https://doi.org/10.1007/s13595-011-0114-y
[47]  Reis, F., Carvalho, F., da Silva, P.M., Mendes, S., Santos, S.A.P. and Sousa, J.P. (2016) The Use of a Functional Approach as Surrogate of Collembola Species Richness in European Perennial Crops and Forests. Ecological Indicators, 61, 676-682.
https://doi.org/10.1016/j.ecolind.2015.10.019
[48]  Meehan, M.L., Song, Z., Lumley, L.M., Cobb, T.P. and Proctor, H. (2019) Soil Mites as Bioindicators of Disturbance in the Boreal Forest in Northern Alberta, Canada: Testing Taxonomic Sufficiency at Multiple Taxonomic Levels. Ecological Indicators, 102, 349-365.
https://doi.org/10.1016/j.ecolind.2019.02.043
[49]  Assessment, M.E. (2005) Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington DC.
[50]  Pey, B., Nahmani, J., Auclerc, A., Capowiez, Y., Cluzeau, D., Cortet, J., Deca?ns, T., Deharveng, L., Dubs, F., Joimel, S., Briard, C., Grumiaux, F., Laporte, M.A., Pasquet, A., Pelosi, C., Pernin, C., Ponge, J.F., Salmon, S., Santorufo, L. and Hedde, M. (2014) Current Use of and Future Needs for Soil Invertebrate Functional Traits in Community Ecology. Basic and Applied Ecology, 15, 194-206.
https://doi.org/10.1016/j.baae.2014.03.007
[51]  de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J.H.C., Bardgett, R.D., Berg, M.P., Cipriotti, P., Feld, C.K., Hering, D., Martins da Silva, P., Potts, S.G., Sandin, L., Sousa, J.P., Storkey, J., Wardle, D.A. and Harrison, P.A. (2010) Towards an Assessment of Multiple Ecosystem Processes and Services via Functional Traits. Biodiversity and Conservation, 19, 2873-2893.
https://doi.org/10.1007/s10531-010-9850-9
[52]  Moretti, M., Dias, A.T.C., de Bello, F., Altermatt, F., Chown, S.L., Azcárate, F.M., Bell, J.R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., ?ckinger, E., Sousa, J.P., Ellers, J. and Berg, M.P. (2017) Handbook of Protocols for standArdized Measurement of Terrestrial Invertebrate Functional Traits. Functional Ecology, 31, 558-567.
https://doi.org/10.1111/1365-2435.12776
[53]  Birkhofer, K., Gossner, M.M., Diekoetter, T., Drees, C., Ferlian, O., Maraun, M., Scheu, S., Weisser, W.W., Wolters, V., Wurst, S., Zaitsev, A.S. and Smith, H.G. (2017) Land-Use Type and Intensity Differentially Filter Traits in Above-and Below-Ground Arthropod Communities. Journal of Animal Ecology, 86, 511-520.
https://doi.org/10.1111/1365-2656.12641
[54]  Barber, N.A., Lamagdeleine-Dent, K.A., Willand, J.E., Jones, H.P. and McCravy, K.W. (2017) Species and Functional Trait Re-Assembly of Ground Beetle Communities in Restored Grasslands. Biodiversity and Conservation, 26, 3481-3498.
https://doi.org/10.1007/s10531-017-1417-6
[55]  Huebner, K., Lindo, Z. and Lechowicz, M.J. (2012) Post-Fire Succession of Collembolan Communities in a Northern Hardwood Forest. European Journal of Soil Biology, 48, 59-65.
https://doi.org/10.1016/j.ejsobi.2011.10.004
[56]  Siira-Pietik?inen, A. and Haimi, J. (2009) Changes in Soil Fauna 10 Years after Forest Harvestings: Comparison between Clear Felling and Green-Tree Retention Methods. Forest Ecology and Management, 258, 332-338.
https://doi.org/10.1016/j.foreco.2009.04.024
[57]  Vandewalle, M., de Bello, F., Berg, M.P., Bolger, T., Doledec, S., Dubs, F., Feld, C.K., Harrington, R., Harrison, P.A., Lavorel, S., da Silva, P.M., Moretti, M., Niemela, J., Santos, P., Sattler, T., Sousa, J.P., Sykes, M.T., Vanbergen, A.J. and Woodcock, B.A. (2010) Functional Traits as Indicators of Biodiversity Response to Land Use Changes across Ecosystems and Organisms. Biodiversity and Conservation, 19, 2921-2947.
https://doi.org/10.1007/s10531-010-9798-9
[58]  Zaitsev, A.S., Chauvat, M., Pflug, A. and Wolters, V. (2002) Oribatid Mite Diversity and Community Dynamics in a Spruce Chronosequence. Soil Biology and Biochemistry, 34, 1919-1927.
https://doi.org/10.1016/S0038-0717(02)00208-0
[59]  Gibb, H., Johansson, T., Stenbacka, F. and Hjalten, J. (2013) Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles. PLOS ONE, 8, e72764.
https://doi.org/10.1371/journal.pone.0072764
[60]  Santorufo, L., Cortet, J., Arena, C., Goudon, R., Rakoto, A., Morel, J.L. and Maisto, G. (2014) An Assessment of the Influence of the Urban Environment on Collembolan Communities in Soils Using Taxonomy-and Trait-Based Approaches. Applied Soil Ecology, 78, 48-56.
https://doi.org/10.1016/j.apsoil.2014.02.008
[61]  Prinzing, A., Kretzler, S., Badejo, A. and Beck, L. (2002) Traits of Oribatid Mite Species That Tolerate Habitat Disturbance Due to Pesticide Application. Soil Biology and Biochemistry, 34, 1655-1661.
https://doi.org/10.1016/S0038-0717(02)00149-9
[62]  Jaenike, J. (1978) A Hypothesis to Account for the Maintenance of Sex within Populations. Evolutionary Theory, 3, 191-194.
[63]  Hamilton, W.D. (1980) Sex versus Non-Sex versus Parasite. Oikos, 35, 282-290.
https://doi.org/10.2307/3544435
[64]  Maynard Smith, J. (1978) The Evolution of Sex. Cambridge University Press, Cambridge.
[65]  McGeoch, M.A., Van Rensburg, B.J. and Botes, A. (2002). The Verification and Application of Bioindicators: A Case Study of Dung Beetles in a Savanna Ecosystem. Journal of Applied Ecology, 39, 661-672.
https://doi.org/10.1046/j.1365-2664.2002.00743.x
[66]  Maraun, M., Caruso, T., Hense, J., Lehmitz, R., Mumladze, L., Murvanidze, M., Nae, I., Schulz, J., Seniczak, A. and Scheu, S. (2019) Parthenogenetic vs. Sexual Reproduction in Oribatid Mite Communities. Ecology and Evolution, 9, 7324-7332.
https://doi.org/10.1002/ece3.5303
[67]  Malmstrom, A. (2012) Life-History Traits Predict Recovery Patterns in Collembola Species after Fire: A 10 Year Study. Applied Soil Ecology, 56, 35-42.
https://doi.org/10.1016/j.apsoil.2012.02.007
[68]  Battigelli, J.P., Spence, J.R., Langor, D.W. and Berch, S.M. (2004) Short-Term Impact of Forest Soil Compaction and Organic Matter Removal on Soil Mesofauna Density and Oribatid Mite Diversity. Canadian Journal of Forest Research, 34, 1136-1149.
https://doi.org/10.1139/x03-267
[69]  Farská, J., Prejzková, K. and Rusek, J. (2014) Management Intensity Affects Traits of Soil Microarthropod Community in Montane Spruce Forest. Applied Soil Ecology, 75, 71-79.
https://doi.org/10.1016/j.apsoil.2013.11.003
[70]  Saifutdinov, R.A., Gongalsky, K.B. and Zaitsev, A.S. (2018) Evidence of a Trait-Specific Response to Burning in Springtails (Hexapoda: Collembola) in the Boreal Forests of European Russia. Geoderma, 332, 173-179.
https://doi.org/10.1016/j.geoderma.2017.07.021
[71]  Ruf, A. (1998) A Maturity Index for Predatory Soil Mites (Mesostigmata: Gamasina) as an Indicator of Environmental Impacts of Pollution on Forest Soils. Applied Soil Ecology, 9, 447-452.
https://doi.org/10.1016/S0929-1393(98)00103-6
[72]  van Eekeren, N., Bommele, L., Bloem, J., Schouten, T., Rutgers, M., de Goede, R., Reheul, D. and Brussaard, L. (2008) Soil Biological Quality after 36 Years of Ley-Arable Cropping, Permanent Grassland and Permanent Arable Cropping. Applied Soil Ecology, 40, 432-446.
https://doi.org/10.1016/j.apsoil.2008.06.010
[73]  Zhao, J., Xun, R., He, X., Zhang, W., Fu, W. and Wang, K. (2015) Size Spectra of Soil Nematode Assemblages under Different Land Use Types. Soil Biology & Biochemistry, 85, 130-136.
https://doi.org/10.1016/j.soilbio.2015.02.035
[74]  Zhao, J., Shao, Y., Wang, X., Neher, D.A., Xu, G., Li, Z.A. and Fu, S. (2013) Sentinel Soil Invertebrate Taxa as Bioindicators for Forest Management Practices. Ecological Indicators, 24, 236-239.
https://doi.org/10.1016/j.ecolind.2012.06.012
[75]  Yang, B., Pang, X., Bao, W. and Zhou, K. (2018) Thinning-Induced Canopy Opening Exerted a Specific Effect on Soil Nematode Community. Ecology and Evolution, 8, 3851-3861.
https://doi.org/10.1002/ece3.3901
[76]  Porazinska, D.L., Duncan, L.W., McSorley, R. and Graham, J.H. (1999) Nematode Communities as Indicators of Status and Processes of a Soil Ecosystem Influenced by Agricultural Management Practices. Applied Soil Ecology, 13, 69-86.
https://doi.org/10.1016/S0929-1393(99)00018-9
[77]  Yeates, G.W., Wardle, D.A. and Watson, R.N. (1999) Responses of Soil Nematode Populations, Community Structure, Diversity and Temporal Variability to Agricultural Intensification over a Seven-Year Period. Soil Biology & Biochemistry, 31, 1721-1733.
https://doi.org/10.1016/S0038-0717(99)00091-7
[78]  Okada, H. and Harada, H. (2007) Effects of Tillage and Fertilizer on Nematode Communities in a Japanese Soybean Field. Applied Soil Ecology, 35, 582-598.
https://doi.org/10.1016/j.apsoil.2006.09.008
[79]  Gulvik, M.E. (2007) Mites (Acari) as Indicators of Soil Biodiversity and Land Use Monitoring: A Review. Polish Journal of Ecology, 55, 415-440.
[80]  Parisi, V., Menta, C., Gardi, C., Jacomini, C. and Mozzanica, E. (2005) Microarthropod Communities as a Tool to Assess Soil Quality and Biodiversity: A New Approach in Italy. Agriculture Ecosystems & Environment, 105, 323-333.
https://doi.org/10.1016/j.agee.2004.02.002
[81]  Menta, C., Conti, F.D., Pinto, S. and Bodini, A. (2018) Soil Biological Quality index (QBS-ar): 15 Years of Application at Global Scale. Ecological Indicators, 85, 773-780.
https://doi.org/10.1016/j.ecolind.2017.11.030
[82]  Rudisser, J., Tasser, E., Peham, T., Meyer, E. and Tappeiner, U. (2015) The Dark Side of Biodiversity: Spatial Application of the Biological Soil Quality Indicator (BSQ). Ecological Indicators, 53, 240-246.
https://doi.org/10.1016/j.ecolind.2015.02.006
[83]  Madej, G. and Kozub, M. (2014) Possibilities of Using Soil Microarthropods, with Emphasis on Mites (Arachnida, Acari, Mesostigmata), in Assessment of Successional Stages in a Reclaimed Coal Mine Dump (Pszów, S Poland). Biological Letters, 51, 19-36.
https://doi.org/10.1515/biolet-2015-0003
[84]  Blasi, S., Menta, C., Balducci, L., Conti, F.D., Petrini, E. and Piovesan, G. (2013) Soil Microarthropod Communities from Mediterranean Forest Ecosystems in Central Italy under Different Disturbances. Environmental Monitoring and Assessment, 185, 1637-1655.
https://doi.org/10.1007/s10661-012-2657-2
[85]  Cristinamenta, Tagliapietra, A., Caoduro, G., Zanetti, A., Pinto, S. and Menta, C. (2015) Agriculture Ibs-Bf and Qbs-Ar Comparison: Two Quantitative Indices Based on Soil Fauna Community. Ecronicon Agriculture, 2, 427-439.
[86]  Mantoni, C., Di Musciano, M. and Fattorini, S. (2020) Use of Microarthropods to Evaluate the Impact of Fire on Soil Biological Quality. Journal of Environmental Management, 266, Article ID: 110624.
https://doi.org/10.1016/j.jenvman.2020.110624
[87]  Yin, R., Kardol, P., Thakur, M.P., Gruss, I., Wu, G.L., Eisenhauer, N. and Schaedler, M. (2020) Soil Functional Biodiversity and Biological Quality under Threat: Intensive Land Use Outweighs Climate Change. Soil Biology & Biochemistry, 147, Article ID: 107847.
https://doi.org/10.1016/j.soilbio.2020.107847
[88]  Hornung, E., Tothmeresz, B., Magura, T. and Vilisics, F. (2007) Changes of Isopod Assemblages along an Urban-Suburban-Rural Gradient in Hungary. European Journal of Soil Biology, 43, 158-165.
https://doi.org/10.1016/j.ejsobi.2007.01.001
[89]  Santorufo, L., Van Gestel, C.A.M., Rocco, A. and Maisto, G. (2012) Soil Invertebrates as Bioindicators of Urban Soil Quality. Environmental Pollution, 161, 57-63.
https://doi.org/10.1016/j.envpol.2011.09.042
[90]  Santorufo, L., Van Gestel, C.A.M. and Maisto, G. (2014) Sampling Season Affects Conclusions on Soil Arthropod Community Structure Responses to Metal Pollution in Mediterranean Urban Soils. Geoderma, 226, 47-53.
https://doi.org/10.1016/j.geoderma.2014.02.001
[91]  Toth, Z. and Hornung, E. (2020) Taxonomic and Functional Response of Millipedes (Diplopoda) to Urban Soil Disturbance in a Metropolitan Area. Insects, 11, Article 25.
https://doi.org/10.3390/insects11010025
[92]  Fiera, C. (2009) Biodiversity of Collembola in Urban Soils and Their Use as Bioindicators for Pollution. Pesquisa Agropecuaria Brasileira, 44, 868-873.
https://doi.org/10.1590/S0100-204X2009000800010
[93]  Milano, V., Maisto, G., Baldantoni, D., Bellino, A., Bernard, C., Croce, A., Dubs, F., Strumia, S. and Cortet, J. (2018) The Effect of Urban Park Landscapes on Soil Collembola Diversity: A Mediterranean Case Study. Landscape and Urban Planning, 180, 135-147.
https://doi.org/10.1016/j.landurbplan.2018.08.008
[94]  Rochefort, S., Shetlar, D.J. and Brodeur, J. (2013) Impact of Four Turf Management Regimes on Arthropod Abundance in Lawns. Pest Management Science, 69, 54-65.
https://doi.org/10.1002/ps.3361
[95]  Joimel, S., Schwartz, C., Hedde, M., Kiyota, S., Krogh, P.H., Nahmani, J., Peres, G., Vergnes, A. and Cortet, J. (2017) Urban and Industrial Land Uses Have a Higher Soil Biological Quality than Expected from Physicochemical Quality. Science of the Total Environment, 584, 614-621.
https://doi.org/10.1016/j.scitotenv.2017.01.086
[96]  Sterzynska, M., Nicia, P., Zadrozny, P., Fiera, C., Shrubovych, J. and Ulrich, W. (2018) Urban Springtail Species Richness Decreases with Increasing Air Pollution. Ecological Indicators, 94, 328-335.
https://doi.org/10.1016/j.ecolind.2018.06.063
[97]  Antrop, M. (2004) Landscape Change and the Urbanization Process in Europe. Landscape and Urban Planning, 67, 9-26.
https://doi.org/10.1016/S0169-2046(03)00026-4
[98]  Seto, K.C., Fragkias, M., Gueneralp, B. and Reilly, M.K. (2011) A Meta-Analysis of Global Urban Land Expansion. PLOS ONE, 6, e23777.
https://doi.org/10.1371/journal.pone.0023777
[99]  Scharenbroch, B.C., Lloyd, J.E. and Johnson-Maynard, J.L. (2005) Distinguishing Urban Soils with Physical, Chemical, and Biological Properties. Pedobiologia, 49, 283-296.
https://doi.org/10.1016/j.pedobi.2004.12.002
[100]  Blakely, J.K., Neher, D.A. and Spongberg, A.L. (2002) Soil Invertebrate and Microbial Communities, and Decomposition as Indicators of Polycyclic Aromatic Hydrocarbon Contamination. Applied Soil Ecology, 21, 71-88.
https://doi.org/10.1016/S0929-1393(02)00023-9
[101]  Errington, I., King, C.K., Houlahan, S., George, S.C., Michie, A. and Hose, G.C. (2018) The Influence of Vegetation and Soil Properties on Springtail Communities in a Diesel-Contaminated Soil. Science of the Total Environment, 619, 1098-1104.
https://doi.org/10.1016/j.scitotenv.2017.11.186
[102]  Garcia-Segura, D., Castillo-Murrieta, I.M., Martinez-Rabelo, F., Gomez-Anaya, A., Rodriguez-Campos, J., Hernandez-Castellanos, B., Contreras-Ramos, S.M. and Barois, I. (2018) Macrofauna and Mesofauna from Soil Contaminated by Oil Extraction. Geoderma, 332, 180-189.
https://doi.org/10.1016/j.geoderma.2017.06.013
[103]  McKinney, M.L. and Lockwood, J.L. (1999) Biotic Homogenization: A Few Winners Replacing Many Losers in the Next Mass Extinction. Trends in Ecology & Evolution, 14, 450-453.
https://doi.org/10.1016/S0169-5347(99)01679-1
[104]  McGeoch, M.A. (2007). Insects and Bioindication: Theory and Progress. Insect Conservation Biology, 7, 144-174.
https://doi.org/10.1079/9781845932541.0144
[105]  Olden, J.D. and Poff, N.L. (2004) Ecological Processes Driving Biotic Homogenization: Testing a Mechanistic Model Using Fish Faunas. Ecology, 85, 1867-1875.
https://doi.org/10.1890/03-3131
[106]  Fountain, M.T. and Hopkin, S.P. (2004) Biodiversity of Collembola in Urban Soils and the Use of Folsomia candida to Assess Soil “Quality”. Ecotoxicology, 13, 555-572.
https://doi.org/10.1023/B:ECTX.0000037192.70167.00

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413