全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Landsat遥感数据城市不透水层信息提取与分析
Extraction and Analysis of Urban Impervious Layer Information Based on Landsat Remote Sensing Data

DOI: 10.12677/gser.2024.132042, PP. 434-445

Keywords: 不透水层,NDISI指数,地表温度反演,时空变化分析
Impervious Layer
, NDISI Index, Inversion of Surface Temperature, Spatio-Temporal Change Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

不透水层作为一种典型的地表覆盖成分,是衡量城市化水平的标准之一,同时也是衡量城市的生态环境的重要指标。本研究以南京市为研究区,以2013~2018年Landsat8影像为数据源,提取不透水层并反演地表温度,分析了2013~2018年南京市不透水层的时空变化以及不透水层与地表温度之间的相关性。研究结果表明:1) 南京市11个行政区县中,鼓楼区不透水层所占的面积最大,六合区所占的面积最小。2) 南京市的不透水面积随时间的推移而增大,越接近市中心的区县,不透水层覆盖面积越大。3) 不透水层与地表温度的相关性较高。
Impervious layer, as a typical surface covering component, is one of the standards to measure the level of urbanization and an important indicator to measure the ecological environment of a city. In this study, Nanjing was taken as the study area, and Landsat8 images from 2013 to 2018 were taken as the data source to extract impermeable layer and invert surface temperature. The spatial and temporal changes of impervious layer and the correlation between impervious layer and surface temperature in Nanjing from 2013 to 2018 were analyzed. The results show that: 1) Among the 11 administrative districts and counties in Nanjing, Gulou district occupies the largest area of impervious layer, while Liuhe district occupies the smallest area. 2) The impervious layer of Nanjing increases with the passage of time. The closer to the downtown area, the greater the impervious layer coverage area. 3) Impervious layer has a high correlation with surface temperature.

References

[1]  潘晨. 基于多源遥感数据的长三角地区不透水层提取及其不确定性研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2016.
[2]  李德仁, 罗晖, 邵振峰. 遥感技术在不透水层提取中的应用与展望[J]. 武汉大学学报(信息科学版), 2016, 41(5): 569-577, 703.
[3]  Slonecker, E.T., Jennings, D.B. and Garofalo, D. (2001) Remote Sensing of Impervious Surfaces: A Review. Remote Sensing Reviews, 20, 227-255.
https://doi.org/10.1080/02757250109532436
[4]  杨朝斌, 何兴元, 张树文, 等. 基于线性光谱模型的城市不透水面遥感估算[J]. 地球环境学报, 2016, 7(1): 77-86.
[5]  Yuan, F. and Bauer, M.E. (2007) Comparison of Impervious Surface Area Andnormalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery. Remote Sensing of Environment, 106, 375-386.
https://doi.org/10.1016/j.rse.2006.09.003
[6]  王浩, 卢善龙, 吴炳方, 等. 不透水面遥感提取及应用研究进展[J]. 地球科学进展, 2013, 28(3): 327-336.
[7]  崔秋洋, 潘云, 杨雪. 基于Landsat 8遥感影像的北京市平原区不透水层盖度估算[J]. 首都师范大学学报(自然科学版), 2015, 36(2): 89-92.
[8]  徐涵秋, 王美雅. 地表不透水面信息遥感的主要方法分析[J]. 遥感学报, 2016, 20(5): 1270-1289.
[9]  黄曦涛, 李怀恩, 张瑜, 等. 利用影像纹理和阴影信息提取城市不透水面的方法——以咸阳市为例[J]. 测绘通报, 2016(5): 80-83.
[10]  朱爽, 崔有祯, 张锦水. 利用复合光谱纹理特征进行城市边缘区不透水层提取[J]. 测绘通报, 2016(11): 26-30.
[11]  Oke, T.R. (1987) Boundary Layer Climates. Routledge, London.
[12]  张文婷, 金可懿, 宋开山, 等. 基于多端元混合光谱模型与Landsat影像的北京不透水层动态研究[J]. 遥感技术与应用, 2015, 30(2): 321-330.
[13]  陈婉佳, 高孝杰, 刘蓉蓉, 等. 基于Landsat 8数据的城市不透水面及其与热环境的关系研究[J]. 测绘与空间地理信息, 2015, 38(4): 92-95.
[14]  张旸, 胡德勇, 陈姗姗. 北京城区不透水地表盖度变化及对地表温度的影响[J]. 地球信息科学学报, 2017, 19(11): 1504-1513.
[15]  Roy Sen, S. and Yuan, F. (2009) Trends in Extreme Temperatures in Relation to Urbanization in the Twin Cities Metropolitan Area, Minnesota. Journal of Applied Meteorology and Climatology, 48, 669-679.
https://doi.org/10.1175/2008JAMC1983.1
[16]  徐涵秋. 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报(信息科学版), 2008, 33(11): 1150-1153, 1211.
[17]  葛壮, 李苗. 基于NDISI的七台河市不透水面信息提取[J]. 哈尔滨师范大学自然科学学报, 2015, 31(3): 129-131.
[18]  高学武, 李茂林, 曹艳, 等. 基于遥感的合肥市不透水层覆盖度研究[J]. 商丘师范学院学报, 2018, 34(9): 52-55.
[19]  Imhoff, M.L., Zhang, P., Wolfe, R.E., et al. (2010) Remote Sensing of the Urban Heat Island Effect Across Biomes in the Continental USA. Remote Sensing of Environment, 114, 504-513.
https://doi.org/10.1016/j.rse.2009.10.008
[20]  林冬凤, 徐涵秋. 厦门城市不透水面及其热环境效应的遥感分析[J]. 亚热带资源与环境学报, 2013, 8(3): 78-84.

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133