全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Biome-BGC模型的1979~2018年青藏高原生态系统总初级生产力时空变化格局研究
Spatio-Temporal Variations Pattern Study of Gross Primary Productivity of 1979~2018 in the Qinghai-Tibet Plateau Based on the Biome-BGC Model

DOI: 10.12677/gser.2024.132044, PP. 457-468

Keywords: 土地利用,草地,森林,CMFD,GPP
Land Use
, Grassland, Forest, CMFD, GPP

Full-Text   Cite this paper   Add to My Lib

Abstract:

在气候变化的背景下,青藏高原作为“世界屋脊”,对全球气候变化具有重要影响。研究这一地区的碳循环格局对于实现中国碳中和目标至关重要。本研究使用高分辨率的中国气象数据集驱动Biome-BGC模型,分析了1979~2018年青藏高原总初级生产力(GPP)的时空变化以及其对环境因子的响应。研究结果显示,青藏高原大部分地区的平均GPP在0至250 gC·m2·yr1之间,而东部部分地区GPP高达1250~1500 gC·m2yr1。过去40年间,青藏高原GPP整体呈现上升趋势,BGC模型模拟的最大值达到约350 gC·m2·yr1,与GLASS和微波遥感数据相似。不同植被类型的GPP都呈正增长趋势,其中森林的GPP最高,达974.45 gC·m2·yr1,沙漠最低,仅28.07 gC·m2·yr1。草地和灌木地随温度和降雨量上升而大幅增加GPP,达到1200 gC·m2·yr1左右的峰值,而裸土呈现波动模式,峰值约70 gC·m2·yr1。GPP的频率分布也随环境条件变化而变化。这些发现加深了我们对青藏高原GPP变化和植被对气候变化响应的理解。
Under climate change, the Qinghai-Tibet Plateau, known as the “Roof of the World”, plays a significant role in global climatic variations. Studying its carbon cycle patterns is crucial for achieving China’s carbon neutrality goals. This research, using high-resolution Chinese meteorological datasets to drive the Biome-BGC model, analyzed the spatial and temporal variations of the total gross primary productivity (GPP) of the Qinghai-Tibet Plateau from 1979 to 2018 and its response to environmental factors. The findings revealed that the average GPP in most areas of the plateau ranged from 0 to 250 gC·m?2·yr?1, with some eastern regions reaching as high as 1250~1500 gC·m?2·yr?1. Over the past 40 years, the plateau’s GPP generally showed an increasing trend, with the BGC model simulating a maximum GPP of around 350 gC·m?2·yr?1, consistent with GLASS and microwave remote sensing data. All vegetation types exhibited a positive growth trend in GPP, with forests recording the highest (974.45 gC·m?2·yr?1) and deserts the lowest (28.07 gC·m?2·yr?1). Grasslands and shrublands showed significant GPP increases with rising temperatures and precipitation, peaking around 1200 gC·m?2·yr?1, while bare soil displayed a fluctuating pattern, peaking at approximately 70 gC·m?2·yr?1. The frequency distribution of GPP also varied with environmental conditions. These results deepen our quantitative understanding of GPP changes and vegetation responses to climate change in the Qinghai-Tibet Plateau.

References

[1]  Fu, B., Ouyang, Z., Shi, P., et al. (2021) Current Condition and Protection Strategies of Qinghai-Tibet Plateau Ecological Security Barrier. Bulletin of Chinese Academy of Sciences (Chinese Version), 36, 1298-1306.
[2]  Li, S., Zhang, H., Zhou, X., et al. (2020) Enhancing Protected Areas for Biodiversity and Ecosystem Services in the Qinghai-Tibet Plateau. Ecosystem Services, 43, Article 101090.
https://doi.org/10.1016/j.ecoser.2020.101090
[3]  Wu, D., Liu, D., Wang, T., et al. (2021) Carbon Turnover Times Shape Topsoil Carbon Difference between Tibetan Plateau and Arctic Tundra. Science Bulletin, 66, 1698-1704.
https://doi.org/10.1016/j.scib.2021.04.019
[4]  Zhou, H., Yang, X., Zhou, C., et al. (2023) Alpine Grassland Degradation and Its Restoration in the Qinghai-Tibet Plateau. Grasses, 2, 31-46.
https://doi.org/10.3390/grasses2010004
[5]  Bi, X., Chang, B., Hou, F., et al. (2021) Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang. International Journal of Environmental Research and Public Health, 18, Article 7111.
https://doi.org/10.3390/ijerph18137111
[6]  Nakano, T., Nemoto, M. and Shinoda, M. (2008) Environmental Controls on Photosynthetic Production and Ecosystem Respiration in Semi-Arid Grasslands of Mongolia. Agricultural and Forest Meteorology, 148, 1456-1466.
https://doi.org/10.1016/j.agrformet.2008.04.011
[7]  Kang, X., Hao, Y., Li, C., et al. (2011) Modeling Impacts of Climate Change on Carbon Dynamics in a Steppe Ecosystem in Inner Mongolia, China. Journal of Soils and Sediments, 11, 562-576.
https://doi.org/10.1007/s11368-011-0339-2
[8]  Zhang, L., Wylie, B., Loveland, T., et al. (2007) Evaluation and Comparison of Gross Primary Production Estimates for the Northern Great Plains Grasslands. Remote Sensing of Environment, 106, 173-189.
https://doi.org/10.1016/j.rse.2006.08.012
[9]  Sims, P.L., Singh, J.S. and Lauenroth, W.K. (1978) The Structure and Function of Ten Western North American Grasslands: I. Abiotic and Vegetational Characteristics. Journal of Ecology, 66, 251-285.
https://doi.org/10.2307/2259192
[10]  Erschbamer, B., Grabherr, G. and Reisigl, H. (1983) Spatial Pattern in Dry Grassland Communities of the Central Alps and Its Ecophysiological Significance. Vegetatio, 54, 143-151.
https://doi.org/10.1007/BF00047102
[11]  Rognli, O.A., Pecetti, L., Kovi, M.R., et al. (2021) Grass and Legume Breeding Matching the Future Needs of European Grassland Farming. Grass and Forage Science, 76, 175-185.
https://doi.org/10.1111/gfs.12535
[12]  Jin, Z., Zhuang, Q., He, J.S., et al. (2015) Net Exchanges of Methane and Carbon Dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environmental Research Letters, 10, Article 085007.
https://doi.org/10.1088/1748-9326/10/8/085007
[13]  Li, J., Gong, J., Guldmann, J.M., et al. (2020) Carbon Dynamics in the Northeastern Qinghai-Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sensing, 12, Article 528.
https://doi.org/10.3390/rs12030528
[14]  Piao, S., He, Y., Wang, X., et al. (2010) Estimation of China’s Terrestrial Ecosystem Carbon Sink: Methods, Progress and Prospects. Nature, 467, 43-51.
https://doi.org/10.1038/nature09364
[15]  Chen, H., Ju, P., Zhu, Q., et al. (2022) Carbon and Nitrogen Cycling on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 701-716.
https://doi.org/10.1038/s43017-022-00344-2
[16]  Mu, C., Abbott, B.W., Norris, A.J., et al. (2020) The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Science Reviews, 211, Article 103433.
https://doi.org/10.1016/j.earscirev.2020.103433
[17]  Zhang, X.Z., Shen, Z.X. and Fu, G. (2015) A Meta-Analysis of the Effects of Experimental Warming on Soil Carbon and Nitrogen Dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
https://doi.org/10.1016/j.apsoil.2014.11.012
[18]  Favre, A., Paeckert, M., Pauls, S.U., et al. (2015) The Role of the Uplift of the Qinghai-Tibetan Plateau for the Evolution of Tibetan Biotas. Biological Reviews, 90, 236-253.
https://doi.org/10.1111/brv.12107
[19]  Xuanlan, Z., Junbang, W., Hui, Y., et al. (2021) The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018. Journal of Resources and Ecology, 12, 305-318.
https://doi.org/10.5814/j.issn.1674-764x.2021.03.001
[20]  Peng, H., Chi, J., Yao, H., et al. (2021) Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 126, e2021JD034671.
https://doi.org/10.1029/2021JD034671
[21]  He, P., Ma, X., Meng, X., et al. (2022) Spatiotemporal Evolutionary and Mechanism Analysis of Grassland GPP in China. Ecological Indicators, 143, Article 109323.
https://doi.org/10.1016/j.ecolind.2022.109323
[22]  Fu, G., Zhang, X., Zhang, Y., et al. (2013) Experimental Warming does not Enhance Gross Primary Production and Above-Ground Biomass in the Alpine Meadow of Tibet. Journal of Applied Remote Sensing, 7, Article 073505.
https://doi.org/10.1117/1.JRS.7.073505
[23]  He, P., Ma, X., Han, Z., et al. (2022) Uncertainties of Gross Primary Productivity of Chinese Grasslands Based on Multi-Source Estimation. Frontiers in Environmental Science, 10, Article 928351.
https://www.frontiersin.org/articles/10.3389/fenvs.2022.928351
https://doi.org/10.3389/fenvs.2022.928351
[24]  朴世龙, 何悦, 王旭辉, 陈发虎. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020.
[25]  Wang, X., Ma, M., Song, Y., et al. (2014) Coupling of a Biogeochemical Model with a Simultaneous Heat and Water Model and Its Evaluation at an Alpine Meadow Site. Environmental Earth Sciences, 72, 4085-4096.
https://doi.org/10.1007/s12665-014-3300-z
[26]  Wu, C. and Wang, T. (2022) Evaluating Cumulative Drought Effect on Global Vegetation Photosynthesis Using Numerous GPP Products. Frontiers in Environmental Science, 10, Article 908875.
https://www.frontiersin.org/articles/10.3389/fenvs.2022.908875
https://doi.org/10.3389/fenvs.2022.908875
[27]  Yang, R., Wang, J., Zeng, N., et al. (2022) Divergent Historical GPP Trends among State-of-the-Art Multi-Model Simulations and Satellite-Based Products. Earth System Dynamics, 13, 833-849.
https://doi.org/10.5194/esd-13-833-2022
[28]  White, M.A., Thornton, P.E., Running, S.W., et al. (2000) Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interactions, 4, 1-85.
https://doi.org/10.1175/1087-3562(2000)004<0003:PASAOT>2.0.CO;2
[29]  Running, S.W. and Gower, S.T. (1991) FOREST-BGC, A General Model of Forest Ecosystem Processes for Regional Applications. II. Dynamic Carbon Allocation and Nitrogen Budgets. Tree Physiology, 9, 147-160.
https://doi.org/10.1093/treephys/9.1-2.147
[30]  Zhang, Y. and Ye, A. (2022) Uncertainty Analysis of Multiple Terrestrial Gross Primary Productivity Products. Global Ecology and Biogeography, 31, 2204-2218.
https://doi.org/10.1111/geb.13578
[31]  Xiao, F., Liu, Q. and Xu, Y. (2022) Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model. Sustainability, 14, Article 7399.
https://doi.org/10.3390/su14127399
[32]  You, Y., Wang, S., Ma, Y., et al. (2019) Improved Modeling of Gross Primary Productivity of Alpine Grasslands on the Tibetan Plateau Using the Biome-BGC Model. Remote Sensing, 11, Article 1287.
https://doi.org/10.3390/rs11111287
[33]  Lu, H.L., Li, F.F., Gong, T.L., et al. (2023) Temporal Variability of Precipitation Over the Qinghai-Tibetan Plateau and Its Surrounding Areas in the Last 40 Years. International Journal of Climatology, 43, 1912-1934.
https://doi.org/10.1002/joc.7953
[34]  Genxu, W., Ju, Q., Guodong, C., et al. (2002) Soil Organic Carbon Pool of Grassland Soils on the Qinghai-Tibetan Plateau and Its Global Implication. Science of the Total Environment, 291, 207-217.
https://doi.org/10.1016/S0048-9697(01)01100-7
[35]  Han, Q., Luo, G., Li, C., et al. (2014) Modeling the Grazing Effect on Dry Grassland Carbon Cycling with Biome-BGC Model. Ecological Complexity, 17, 149-157.
https://doi.org/10.1016/j.ecocom.2013.12.002
[36]  Lellei-Kovács, E., Barcza, Z., Hidy, D., et al. (2014) Application of Biome-BGC MuSo in Managed Grassland Ecosystems in the Euro-Mediteranean Region. FACCE MACSUR Reports, 3, 3-58.
[37]  Chen, Y. and Xiao, W. (2019) Estimation of Forest NPP and Carbon Sequestration in the Three Gorges Reservoir Area, Using the Biome-BGC Model. Forests, 10, Article 149.
https://doi.org/10.3390/f10020149
[38]  Zheng, Y., Shen, R., Wang, Y., et al. (2020) Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982-2017. Earth System Science Data, 12, 2725-2746.
https://doi.org/10.5194/essd-12-2725-2020
[39]  丁光旭, 郭家力, 汤正阳, 等. 多种降水再分析数据在长江流域的适用性对比[J]. 人民长江, 2022, 53(9): 72-79.
https://doi.org/10.16232/j.cnki.1001-4179.2022.09.012
[40]  李晓东. 青海湖水体对流域气候和生态环境变化的响应[D]: [博士学位论文]. 兰州: 兰州大学, 2022.
https://doi.org/10.27204/d.cnki.glzhu.2022.001524
[41]  Zhu, Z., Sun, X., Wen, X., et al. (2006) Study on the Processing Method of Nighttime CO2 Eddy Covariance Flux Data in ChinaFLUX. Science in China Series D: Earth Sciences, 49, 36-46.
https://doi.org/10.1007/s11430-006-8036-5
[42]  Chen, S., Sui, L., Liu, L., et al. (2022) Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sensing, 14, Article 57.
https://doi.org/10.3390/rs14010057
[43]  Teubner, I.E., Forkel, M., Wild, B., et al. (2021) Impact of Temperature and Water Availability on Microwave-Derived Gross Primary Production. Biogeosciences, 18, 3285-3308.
https://doi.org/10.5194/bg-18-3285-2021
[44]  Liu, J. and Deng, X. (2010) Progress of the Research Methodologies on the Temporal and Spatial Process of LUCC. Chinese Science Bulletin, 55, 1354-1362.
https://doi.org/10.1007/s11434-009-0733-y
[45]  Ma, M., Yuan, W., Dong, J., et al. (2018) Large-Scale Estimates of Gross Primary Production on the Qinghai-Tibet Plateau Based on Remote Sensing Data. International Journal of Digital Earth, 11, 1166-1183.
https://doi.org/10.1080/17538947.2017.1381192
[46]  Sun, S., Che, T., Li, H., et al. (2019) Water and Carbon Dioxide Exchange of an Alpine Meadow Ecosystem in the Northeastern Tibetan Plateau Is Energy-Limited. Agricultural and Forest Meteorology, 275, 283-295.
https://doi.org/10.1016/j.agrformet.2019.06.003
[47]  马敏娜, 袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418.
[48]  Yi, S.H., Xiang, B., Meng, B.P., et al. (2019) Modeling the Carbon Dynamics of Alpine Grassland in the Qinghai-Tibetan Plateau under Scenarios of 1.5℃ and 2℃ Global Warming. Advances in Climate Change Research, 10, 80-91.
https://doi.org/10.1016/j.accre.2019.06.001
[49]  Deng, M., Meng, X., Lu, Y., et al. (2022) The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing, 14, Article 3337.
https://doi.org/10.3390/rs14143337
[50]  Wang, Z., Cao, S., Cao, G., et al. (2021) Effects of Vegetation Phenology on Vegetation Productivity in the Qinghai Lake Basin of the Northeastern Qinghai-Tibet Plateau. Arabian Journal of Geosciences, 14, Article No. 1030.
https://doi.org/10.1007/s12517-021-07440-5
[51]  Zhang, H. and Dou, R. (2020) Interannual and Seasonal Variability in Evapotranspiration of Alpine Meadow in the Qinghai-Tibetan Plateau. Arabian Journal of Geosciences, 13, Article No. 968.
https://doi.org/10.1007/s12517-020-06022-1
[52]  Wu, H., Fu, C., Wu, H., et al. (2020) Plant Hydraulic Stress Strategy Improves Model Predictions of the Response of Gross Primary Productivity to Drought across China. Journal of Geophysical Research: Atmospheres, 125, e2020JD033476.
https://doi.org/10.1029/2020JD033476
[53]  Zhang, Y., Xiao, X., Wu, X., et al. (2017) A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000-2016. Scientific Data, 4, Article No. 170165.
https://doi.org/10.1038/sdata.2017.165

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133