全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多融合策略改进灰狼优化算法的图像分割
Gray Wolf Optimization Algorithm for Image Segmentation Improved by Multiple Fusion Strategies

DOI: 10.12677/jisp.2024.132019, PP. 225-237

Keywords: 图像分割,灰狼优化算法,镜像反向学习,Tent混沌映射优化,K均值聚类算法
Image Segmentation
, Gray Wolf Optimization Algorithm, Reverse-Learning Based Lens Imaging, Tent Chaotic Mapping, Kmeans Clustering Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种多策略融合改进的灰狼优化算法的图像分割。首先,针对灰狼优化算法的收敛速度慢,易陷入局部最优解等问题分别采用Tent混沌映射优化、收敛因子非线性调整、透镜成像反向学习、修改位置更新方程策略来提升了灰狼算法的搜索性能和收敛速度,并通过不同的基准测试函数验证了改进算法的优越性。其次,通过改进的灰狼优化算法获取K均值聚类算法的初始聚类中心,并应用于图像分割当中从而进一步提高图像分割效率。最后,将所提出的方法应用于医学图像进行实验。实验结果表明,与传统的图像分割算法和其他优化算法相比,本文提出的方法明显提高了图像分割的质量和效果,且具有更好的鲁棒性和稳定性。
This paper presents a multi-strategy integrated enhancement of the gray wolf optimization algorithm for image segmentation. Initially, various strategies such as Tent chaotic mapping optimization, non-linear adjustment of convergence factor, reverse-learning based lens imaging, and position updating are employed to enhance the search performance and convergence speed of the gray wolf algorithm, addressing issues like slow convergence speed and susceptibility to local optima. The enhanced algorithm is validated through different benchmark test functions. Subsequently, the improved gray wolf optimization algorithm is utilized to obtain initial clustering centers for image segmentation, further enhancing the efficiency of the segmentation process. Finally, the proposed method is applied to medical images in experimental settings. The experimental results demonstrate that compared to traditional image segmentation algorithms and other optimization algorithms, the proposed method significantly improves the quality and effectiveness of image segmentation, exhibiting better robustness and stability.

References

[1]  Wu, M., Ye, H.-L., Wu, Y., et al. (2022) Brain Tumor Image Segmentation Based on Grouped Convolution. Journal of Physics: Conference Series, 2278, Article ID: 012042.
https://doi.org/10.1088/1742-6596/2278/1/012042
[2]  Gutiérrez-Zaballa, J., Basterretxea, K., Echanobe, J., et al. (2023) On-Chip Hyperspectral Image Segmentation with Fully Convolutional Networks for Scene Understanding in Autonomous Driving. Journal of Systems Architecture, 139, Article ID: 102878.
https://doi.org/10.1016/j.sysarc.2023.102878
[3]  卢才武, 宋义良, 江松, 等. 基于改进U-net的少样本煤岩界面图像分割方法[J]. 金属矿山, 2024(1): 149-157.
[4]  夏月月, 张以文. 一种融合三支决策理论的改进K-means算法[J]. 小型微型计算机系统, 2020, 41(4): 724-731.
[5]  Lahbib, K., el Akkad, N., Satori, H., et al. (2022) A Performant Clustering Approach Based on an Improved Sine Cosine Algorithm. International Journal of Computing, 21, 159-168.
https://doi.org/10.47839/ijc.21.2.2584
[6]  Li, H., He, H. and Wen, Y. (2015) Dynamic Particle Swarm Optimization and K-Means Clustering Algorithm for Image Segmentation. Optik, 126, 4817-4822.
https://doi.org/10.1016/j.ijleo.2015.09.127
[7]  董跃华, 李俊, 朱东林. 基于Halton序列改进蝠鲼算法的K-means图像分割[J]. 电光与控制, 2023, 30(2): 91-98.
[8]  Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007
[9]  Wang, J.-S. and Li, S.-X. (2019) An Improved Grey Wolf Optimizer Based on Differential Evolution and Elimination Mechanism. Scientific Reports, 9, Article No. 7181.
https://doi.org/10.1038/s41598-019-43546-3
[10]  Gupta, S. and Deep, K. (2019) A Novel Random Walk Grey Wolf Optimizer. Swarm and Evolutionary Computation, 44, 101-112.
https://doi.org/10.1016/j.swevo.2018.01.001
[11]  Meidani, K., Hemmasian, A., Mirjalili, S., et al. (2022) Adaptive Grey Wolf Optimizer. Neural Computing and Applications, 34, 7711-7731.
https://doi.org/10.1007/s00521-021-06885-9
[12]  Fei, M.E.N. and Xi, J. (2020) Improved Gray Wolf Optimization Algorithm for Solving Low-Carbon Transportation Scheduling Problem in Open-Pit Mines. Journal of Mine Automation, 46, 90-94.
[13]  Wang, Y., Zhang, X., Yu, D.-J., et al. (2022) Tent Chaotic Map and Population Classification Evolution Strategy-Based Dragonfly Algorithm for Global Optimization. Mathematical Problems in Engineering, 2022, e2508414.
https://doi.org/10.1155/2022/2508414
[14]  Long, W., Liang, X., Cai, S., et al. (2017) A Modified Augmented Lagrangian with Improved Grey Wolf Optimization to Constrained Optimization Problems. Neural Computing and Applications, 28, 421-438.
https://doi.org/10.1007/s00521-016-2357-x
[15]  Yang, J.C. and Long, W. (2016) Improved Grey Wolf Optimization Algorithm for Constrained Mechanical Design Problems. Applied Mechanics and Materials, 851, 553-558.
https://doi.org/10.4028/www.scientific.net/AMM.851.553
[16]  龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164.
[17]  Teng, Z., Lv, J. and Guo, L. (2019) An Improved Hybrid Grey Wolf Optimization Algorithm. Soft Computing, 23, 6617-6631.
https://doi.org/10.1007/s00500-018-3310-y
[18]  Mirjalili, S. and Lewis, A. (2016) The Whale Optimization Algorithm. Advances in Engineering Software, 95, 51-67.
https://doi.org/10.1016/j.advengsoft.2016.01.008
[19]  Xue, J. and Shen, B. (2020) A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Systems Science & Control Engineering, 8, 22-34.
https://doi.org/10.1080/21642583.2019.1708830
[20]  Gad, A.G. (2022) Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering, 29, 2531-2561.
https://doi.org/10.1007/s11831-021-09694-4
[21]  Das, A., Namtirtha, A. and Dutta, A. (2023) Lévy-Cauchy Arithmetic Optimization Algorithm Combined with Rough K-Means for Image Segmentation. Applied Soft Computing, 140, Article ID: 110268.
https://doi.org/10.1016/j.asoc.2023.110268
[22]  Sharma, A., Chaturvedi, R. and Bhargava, A. (2022) A Novel Opposition Based Improved Firefly Algorithm for Multilevel Image Segmentation. Multimedia Tools and Applications, 81, 15521-15544.
https://doi.org/10.1007/s11042-022-12303-6
[23]  Peng, L. and Zhang, D. (2022) An Adaptive Lévy Flight Firefly Algorithm for Multilevel Image Thresholding Based on Rényi Entropy. The Journal of Supercomputing, 78, 6875-6896.
https://doi.org/10.1007/s11227-021-04150-3

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413