全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CMOS集成电路总剂量效应加固技术研究现状
Research Status of Total Dose Effect of CMOS Integrated Circuit

DOI: 10.12677/nst.2024.122013, PP. 118-128

Keywords: CMOS集成电路,总剂量效应,抗辐射加固技术
CMOS Integrated Circuit
, Total Dose Effect (TID), Radiation Resistance Reinforcement Technology

Full-Text   Cite this paper   Add to My Lib

Abstract:

在核设施运行、乏燃料后处理、可控核聚变、航天卫星与太空探索、核军工、γ辐照站等存在强辐射的场景下,高能粒子、射线会与器件中的半导体材料相互作用产生辐射效应,对信号的完整性和精度产生较大影响。本文首先介绍了总剂量效应(TID)的作用机制,及其在MOS器件中的主要影响:总剂量效应会导致MOS管阈值电压漂移、跨导下降、载流子迁移率降低和电流额外泄漏等问题。其次,按照时间顺序依次阐述了近代以来总剂量效应在半导体器件特别是是CMOS器件中的具体影响,尤其对浅槽隔离氧化物(Shallow Trench Isolation, STI)受到总剂量效应的影响做了着重描述。最后,分析了在电路级中的总剂量效应,以及目前流行的几种抗辐射加固技术。
In the scenario of strong radiation in the operation of nuclear facilities, spent fuel reprocessing, controllable nuclear fusion, space satellites and space exploration, nuclear military industry, and γ radiation station, high-energy particles and rays will interact with the semiconductor materials in the device to produce radiation effect, which will have a great impact on the integrity and accuracy of the signal. This paper first introduces the mechanism of total dose effect (TID) and its main effects in MOS devices: total dose effect leads to MOS tube threshold voltage drift, transguide drop, reduced carrier mobility, and additional current leakage. Secondly, the specific effects of the total dose effect in semiconductor devices, especially CMOS devices in modern times are expounded in chronological order, especially for the influence of shallow trough isolated oxides (Shallow Trench Isolation, STI) by the total dose effect. Finally, the total dose effect at the circuit level and several popular radiation reinforcement techniques are analyzed.

References

[1]  王同权, 沈永平, 王尚武, 等. 空间辐射环境中的辐射效应[J]. 国防科技大学学报, 1999, 21(4): 36-39.
http://journal.nudt.edu.cn/gfkjdxxb/ch/reader/view_abstract.aspx?file_no=199904009
[2]  Schwank, J.R. (2002) Total-Dose Effects in MOS Devices. NSREC Short Course.
[3]  Lacoe, R. (2003) CMOS Scaling: Design Principles and Hardening-by-Design Methodology. NSREC Short Course.
[4]  Barnaby, H.J. (2005) Total-Dose Effects in Modern Integrated Circuits. In: Schrimpf, R.D. and Fleetwood, D.M., Eds., Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices, World Scientific Publishing Company, Singapore City, 235-257.
https://doi.org/10.1142/9789812794703_0015
[5]  C. Claeys, E. Simoen. 先进半导体材料及器件的辐射效应[M]. 北京: 国防工业出版社, 2008.
[6]  田海燕, 胡永强. 体硅集成电路版图抗辐射加固设计技术研究[J]. 电子与封装, 2013, 13(9): 26-30.
https://doi.org/10.16257/j.cnki.1681-1070.2013.09.007
[7]  Ma, T.P. and Dressendorfer, P.V. (1989) Ionizing Radiation Effects in MOS Devices and Circuits. John Wiley & Sons, New York, 180-220.
[8]  Neamen, D., Shedd, W. and Buchanan, B. (1972) Effects of Ionizing Radiation on Dielectrically Isolated Junction Field Effect Transistors. IEEE Transactions on Nuclear Science, 19, 400-405.
https://doi.org/10.1109/TNS.1972.4326865
[9]  Kenkare, P.U. et al. (1994) Scaling of Poly-Encapsulated LOCOS for 0.35μm CMOS technology. IEEE Transactions on Electron Devices, 41, 56-62.
https://doi.org/10.1109/16.259620
[10]  Schwank, J.R., et al. (2008) Radiation Effects in MOS Oxides. IEEE Transactions on Nuclear Science, 55, 1833-1853.
https://doi.org/10.1109/TNS.2008.2001040
[11]  Barnaby, H.J., Mclain, M. and Esqueda, I.S. (2007) Total-Ionizing-Dose Effects on Isolation Oxides in Modern CMOS Technologies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 261, 1142-1145
https://doi.org/10.1016/j.nimb.2007.03.109
[12]  Barnaby, H.J. (2006) Total-Ionizing-Dose Effects in Modern CMOS Technologies. IEEE Transactions on Nuclear Science, 53, 3103-3121.
https://doi.org/10.1109/TNS.2006.885952
[13]  Faccio, F. and Cervelli, G. (2005) Radiation-Induced Edge Effects in Deep Submicron CMOS Transistors. IEEE Transactions on Nuclear Science, 52, 2413-2420.
https://doi.org/10.1109/TNS.2005.860698
[14]  Shaneyfelt, M.R., Dodd, P.E., Draper, B.L., et al. (1998) Challenges in Hardening Technologies Using Shallow-Trench Isolation. IEEE Transactions on Nuclear Science, 45, 2584-2592.
https://doi.org/10.1109/23.736501
[15]  Jun, B., Diestelhorst, R.M., Bellini, M., Espinel, G., Appaswamy, A., Prakash, A.P.G., Cressler, J.D., Chen, D., Schrimpf, R.D., Fleetwood, D.M., Turowski, M. and Raman, A. (2006) Temperature-Dependence of Off-State Drain Leakage in X-Ray Irradiated 130 nm CMOS Devices. IEEE Transactions on Nuclear Science, 53, 3203-3209.
https://doi.org/10.1109/TNS.2006.886230
[16]  Johnston, A.H., Swimm, R.T., Allen, G.R. and Miyahira, T.F. (2009) Total Dose Effects in CMOS Trench Isolation Regions. IEEE Transactions on Nuclear Science, 56, 1941-1949.
https://doi.org/10.1109/TNS.2009.2019273
[17]  刘保军, 刘小强, 等. 纳米CMOS器件及电路的辐射效应[M]. 北京: 电子工业出版社, 2021.
[18]  郭红霞, 王伟, 张凤祁, 等. 新型微电子技术电离辐射总剂量效应面临的挑战[J]. 核电子学与探测技术, 2011, 31(1): 115-119.
https://doi.org/10.3969/j.issn.0258-0934.2011.01.028
[19]  Manghisoni, M., Ratti, L., Re, V. and Speziali, V. (2002) Radiation Hardness Perspectives for the Design of Analog Detector Readout Circuits in the 0.18-μm CMOS Generation. IEEE Transactions on Nuclear Science, 49, 2902-2909.
https://doi.org/10.1109/TNS.2002.805413
[20]  Manghisoni, M., Ratti, L., Re, V., Speziali, V., Traversi, G. and Candelori, A. (2003) Comparison of Ionizing Radiation Effects in 0.18 and 0.25 μm CMOS Technologies for Analog Applications. IEEE Transactions on Nuclear Science, 50, 1827-1833.
https://doi.org/10.1109/TNS.2003.820767
[21]  Re, V., Manghisoni, M., Ratti, L., Speziali, V. and Traversi, G. (2005) Total Ionizing Dose Effects on the Analog Performance of a 0.13-μm CMOS Technology. IEEE Transactions on Nuclear Science, 53, 1599-1606.
https://doi.org/10.1109/TNS.2006.871802
[22]  印琴, 蔡洁明, 刘士全, 等. 集成电路总剂量加固技术的研究进展[J]. 太赫兹科学与电子信息学报, 2017, 15(1): 148-152.
[23]  王健安, 谢家志, 赖凡. 微电子器件抗辐射加固技术发展研究[J]. 微电子学, 2014, 44(2): 225-228.
[24]  范雪, 李威, 李平, 等. 基于环形栅和半环形栅N沟道金属氧化物半导体晶体管的总剂量辐射效应研究[J]. 物理学报, 2012, 61(1): 318-323.
[25]  Snoeys, W.J., Gutierrez, T.A.P. and Anelli, G. (2002) A New NMOS Layout Structure for Radiation Tolerance. IEEE Transactions on Nuclear Science, 49, 1829-1833.
https://doi.org/10.1109/TNS.2002.801534
[26]  Lacoe, R.C., Osborn, J.V., Mayer, D.C., Brown, S. and Gambles, J. (2001) Total-Dose Tolerance of the Commercial Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-μm CMOS Process. 2001 IEEE Radiation Effects Data Workshop, Vancouver, BC, 16-20 July 2001, 72-76.
https://ieeexplore.ieee.org/document/960453
https://doi.org/10.1109/REDW.2001.960453
[27]  Vilella, E. and Diéguez, A. (2010) Design of a Bandgap Reference Circuit with Trimming for Operation at Multiple Voltages and Tolerant to Radiation in 90 nm CMOS Technology. The IEEE Computer Society Annual Symposium on VLSI, Lixouri, 5-7 July 2010, 269-272.
https://doi.org/10.1109/ISVLSI.2010.64
[28]  Agostinho, P.R., Goncalez, O.L. and Wirth, G. (2016) Rail to Rail Radiation Hardened Operational Amplifier in Standard CMOS Technology with Standard Layout Techniques. Microelectronics Reliability, 67, 99-103.
https://doi.org/10.1016/j.microrel.2016.11.001
[29]  Rax, B.G., Lee, C.I. and Johnston, A.H. (1997) Degradation of Precision Reference Devices in Space Environments. IEEE Transactions on Nuclear Science, 44, 1939-1944.
https://doi.org/10.1109/23.658965
[30]  (2015) LTZ1000 Data Sheet. Linear Technology Corporation, Milpitas.
[31]  Franco, F.J., Zong, Y., Agapito, J.A. and Cachero, A.H. (2005) Radiation Effects on XFET Voltage References. IEEE Radiation Effects Data Workshop, 2005, Seattle, 11-15 July 2005, 138-143.
[32]  Gromov, V., Annema, A.J., Kluit, R., Visschers, J.L. and Timmer, P. (2007) A Radiation Hard Bandgap Reference Circuit in a Standard 0.13 μm CMOS Technology. IEEE Transactions on Nuclear Science, 54, 2727-2733.
https://doi.org/10.1109/TNS.2007.910170
[33]  Walters, M. and Reisman, A. (1991) Radiation-Induced Neutral Electrontrap Generation in Electrically Biased Insulated Gate Field Effect Transistor Gate Insulators. Journal of the Electrochemical Society, 138, 2756-2762.
https://doi.org/10.1149/1.2086050

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413