全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

污水污泥增压水热过程磷转化特性研究
Characterisation of Phosphorus Transformation in Sewage Sludge during Pressurized Hydrothermal Process

DOI: 10.12677/jocr.2024.122013, PP. 163-173

Keywords: 温度–压力解耦,氧化还原电位,温度,停留时间
Decoupling Temperature-Pressure
, Redox Potential, Temperature, Residence Time

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过氮气加压实现了水热过程温度–压力解耦,考察了水热温度、停留时间和初始水热压力对污泥模化物水热过程中磷形态转化的影响。研究表明,水热温度升高导致Fe(II)-P向Res-P转化;延长停留时间有利于三价铁还原,而Fe(II)-P占TP比例呈双向变化。因此,水热温度110℃和停留时间4 h为最佳水热工况。增加初始水热压力可以强化磷向水热炭富集,总磷(TP)浓度从32.88 mg/g (0.1 MPa)增至61.67 mg/g (1.0 MPa),同时促进了有机物分解转化,水热产物有机酸导致水热液pH降低。有机酸等还原性物质使得水热液氧化还原电位降低,促进了三价铁还原,水热炭中Fe(II)-P浓度升高,从而有利于蓝铁矿生成,并在增压水热炭X射线衍射峰的17.88?和27.81?处观察较强的蓝铁矿特征衍射峰,说明温度–压力解耦水热有利于蓝铁矿生成,可为城市污泥磷资源回收提供参考。
Decoupling temperature-pressure hydrothermal process was achieved through nitrogen pressurization, and the effects of hydrothermal temperature, residence time, and initial pressure on phosphorus transformation were investigated during the hydrothermal treatment of sludge model compounds. Results show that high hydrothermal temperature promotes the conversion of Fe (II)-P to Res-P. Extending the residence time is beneficial for the reduction of trivalent iron, while the proportion of Fe (II)-P to TP shows a bidirectional change. Therefore, hydrothermal temperature of 110?C and a residence time of 4 h are the optimum hydrothermal conditions. Increasing the initial pressure can enhance the enrichment of phosphorus into hydrochar and its total phosphorus (TP) concentration increases from 32.88 mg/g (0.1 MPa) to 61.67 mg/g (1.0 MPa). At the same time, it promotes the decomposition of organic matter, and the generation of organic acids leads to decreased pH value of process water. The reducing substances such as organic acids decrease the redox potential of process waster promoting the reduction of trivalent iron. The concentration of Fe (II)-P in hydrochar increases, which is beneficial for the generation of vivianite. The characteristic diffraction peaks of vivianite at 17.88? and 27.81? in pressurized hydrochar become strong, indicating that decoupling temperature-pressure hydrothermal treatment is beneficial for the formation of vivianite. This can provide a reference for the phosphorus recovery from urban sludge.

References

[1]  张卫峰, 张福锁, 马骥. 中国、美国、摩洛哥磷矿资源优势及开发战略比较分析[J]. 自然资源学报, 2005, 20(3): 378-386.
[2]  Cooper, J., Lombardi, R., Boardman, D., et al. (2011) The Future Distribution and Production of Global Phosphate Rock Reserves. Resources, Conservation and Recycling, 57, 78-86.
https://doi.org/10.1016/j.resconrec.2011.09.009
[3]  Akinnawo, S.O. (2023) Eutrophication: Causes, Consequences, Physical, Chemical and Biological Techniques for Mitigation Strategies. Environmental Challenges, 12, Article ID: 100733.
https://doi.org/10.1016/j.envc.2023.100733
[4]  Liu, H., Hu, G., Basar, I, A., et al. (2021) Phosphorus Recovery from Municipal Sludge-Derived Ash and Hydrochar through Wet-Chemical Technology: A Review towards Sustainable Waste Management. Chemical Engineering Journal, 417, Article ID: 129300.
https://doi.org/10.1016/j.cej.2021.129300
[5]  中华人民共和国住房和城乡建设部. 2022年中国城市建设状况公报[EB/OL]. 2023.
https://www.mohurd.gov.cn/file/2023/20231012/7c6d9416-49d5-463a-b702-8a22f6c350b0.docx?n=2022年中国城市建设状况公报, 2024-04-12.
[6]  王超, 刘清伟, 职音, 等. 中国市政污泥中磷的含量与形态分布[J]. 环境科学, 2019, 40(4): 1922-1930.
[7]  郝晓地, 周健, 王崇臣, 等. 污水磷回收新产物——蓝铁矿[J]. 环境科学学报, 2018, 38(11): 4223-4234.
[8]  Zhang, J., Chen, Z., Liu, Y., et al. (2022) Phosphorus Recovery from Wastewater and Sewage Sludge as Vivianite. Journal of Cleaner Production, 370, Article ID: 133439.
https://doi.org/10.1016/j.jclepro.2022.133439
[9]  Yang, L., Guo, X., Liang, S., et al. (2023) A Sustainable Strategy for Recovery of Phosphorus as Vivianite from Sewage Sludge via Alkali-Activated Pyrolysis, Water Leaching and Crystallization. Water Research, 233, Article ID: 119769.
https://doi.org/10.1016/j.watres.2023.119769
[10]  Wang, S., Wu, Y., An, J., et al. (2020) Geobacter Autogenically Secretes Fulvic Acid to Facilitate the Dissimilated Iron Reduction and Vivianite Recovery. Environmental Science & Technology, 54, 10850-10858.
https://doi.org/10.1021/acs.est.0c01404
[11]  邹正康, 郭晓, 梁莎, 等. 市政污泥热化学转化技术研究进展[J]. 能源环境保护, 2023, 37(5): 110-120.
[12]  Wang, Q., Zhang, C., Patel, D., et al. (2020) Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge. Environmental Science & Technology, 54, 8362-8372.
https://doi.org/10.1021/acs.est.0c00501
[13]  陈伟, 郑晓园, 纪莎莎, 等. 污水污泥水热炭化处理研究进展[J]. 热能动力工程, 2020, 35(2): 1-8, 25.
[14]  Xiao, Y., Ding, L., Yang, Y., et al. (2022) Iron Valence State Evolution and Hydrochar Properties under Hydrothermal Carbonization of Dyeing Sludge. Waste Management, 152, 94-101.
https://doi.org/10.1016/j.wasman.2022.07.009
[15]  Yang, X., Yu, C., Hassan, B., et al. (2023) Pyrolytic Mechanisms of Typical Organic Components of Sewage Sludge In the Presence of CaO: Polysaccharides, Proteins, and Lipids. Science of the Total Environment, 901, Article ID: 166020.
https://doi.org/10.1016/j.scitotenv.2023.166020
[16]  Yu, S., He, J., Zhang, Z., et al. (2024) Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials.
https://doi.org/10.1002/adma.202307412
[17]  Fang, Z., Zhuang, X., Zhang, X., et al. (2023) Influence of Paraments on the Transformation Behaviors and Directional Adjustment Strategies of Phosphorus Forms during Different Thermochemical Treatments of Sludge. Fuel, 333, Article ID: 126544.
https://doi.org/10.1016/j.fuel.2022.126544
[18]  Rebosura, M., Salehin, S., Pikaar, I., et al. (2018) A Comprehensive Laboratory Assessment of the Effects of Sewer-Dosed Iron Salts on Wastewater Treatment Processes. Water Research, 146, 109-117.
https://doi.org/10.1016/j.watres.2018.09.021
[19]  Liu, X., Zhai, Y., Li, S., et al. (2020) Hydrothermal Carbonization of Sewage Sludge: Effect of Feed-Water PH on Hydrochar’s Physicochemical Properties, Organic Component and Thermal Behavior. Journal of Hazardous Materials, 388, Article ID: 122084.
https://doi.org/10.1016/j.jhazmat.2020.122084
[20]  Wang, F., Guo, C., Liu, X., et al. (2022) Revealing Carbon-Iron Interaction Characteristics in Sludge-Derived Hydrochars under Different Hydrothermal Conditions. Chemosphere, 300, Article ID: 134572.
https://doi.org/10.1016/j.chemosphere.2022.134572
[21]  Ogorodova, L., Vigasina, M., Mel’chakova, L., et al. (2017) Enthalpy of Formation of Natural Hydrous Iron Phosphate: Vivianite. The Journal of Chemical Thermodynamics, 110, 193-200.
https://doi.org/10.1016/j.jct.2017.02.020
[22]  Yu, S., Zhao, P., Yang, X., et al. (2022) Low-Temperature Hydrothermal Carbonization of Pectin Enabled by High Pressure. Journal of Analytical and Applied Pyrolysis, 166, Article ID: 105627.
https://doi.org/10.1016/j.jaap.2022.105627
[23]  于士杰, 赵鹏, 刘茂清, 等. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响[J]. 燃料化学学报(中英文), 2023, 51(8): 1106-1113.
[24]  Gu, S., Qian, Y., Jiao, Y., et al. (2016) An Innovative Approach for Sequential Extraction of Phosphorus in Sediments: Ferrous Iron P as an Independent P Fraction. Water Research, 103, 352-361.
https://doi.org/10.1016/j.watres.2016.07.058
[25]  Wang, Q., Kim, T.H., Reitzel, K., et al. (2021) Quantitative Determination of Vivianite in Sewage Sludge by a Phosphate Extraction Protocol Validated by PXRD, SEM-EDS, and 31P NMR Spectroscopy towards Efficient Vivianite Recovery. Water Research, 202, Article ID: 117411.
https://doi.org/10.1016/j.watres.2021.117411
[26]  郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025.
[27]  Zhuang, X., Huang, Y., Song, Y., et al. (2017) The Transformation Pathways of Nitrogen in Sewage Sludge during Hydrothermal Treatment. Bioresource Technology, 245, 463-740.
https://doi.org/10.1016/j.biortech.2017.08.195
[28]  汪君, 时澜, 高英, 等. 葡萄糖水热过程中焦炭结构演变特性[J]. 农业工程学报, 2013, 29(7): 191-198.
[29]  Wang, T., Zhai, Y., Zhu, Y., et al. (2018) Influence of Temperature on Nitrogen Fate during Hydrothermal Carbonization of Food Waste. Bioresource Technology, 247, 182-189.
https://doi.org/10.1016/j.biortech.2017.09.076

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413