全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

吡咯里嗪衍生物的合成研究
Synthesis Studies of Pyrrolizidine Derivatives

DOI: 10.12677/jocr.2024.122015, PP. 182-194

Keywords: 吡咯里嗪,杂环化合物,含氮化合物
Pyrrolizine
, Heterocyclic Compound, Nitrogen Compounds

Full-Text   Cite this paper   Add to My Lib

Abstract:

吡咯里嗪类化合物是一种重要的双环融合的杂环化合物,其核心骨架中含有桥头氮,通常存在于具有生物活性的化合物中,在植物、昆虫、动物、海洋生物和微生物的次级代谢产物中被广泛分离得到,具有消炎、止痛和抗肿瘤、抗病毒等活性。因此,在过去几年中,开发高效且稳健的官能化吡咯里嗪类化合物的合成方法引起了人们的极大兴趣。鉴于此,本文对近些年吡咯里嗪类化合物的合成方法进行了综述,希望能进一步为吡咯里嗪类化合物的合成研究提供参考。
Pyrrolizines compounds are important bicyclic fused heterocyclic compounds, whose core skeleton contains bridgehead nitrogen, which is usually found in biologically active compounds and widely isolated from secondary metabolites of plants, insects, animals, Marine organisms and microorganisms, with anti-inflammatory, analgesic, anti-tumor, anti-viral activities. Thus, during the past several years, there has been a lot of interest in the development of reliable and efficient synthetic methods for the production of functionalized pyrrolizine analogues. Because of this, this study covers the synthetic procedures for pyrrolizines that have been developed recently in an effort to further the synthetic investigations of pyrrolizines.

References

[1]  Ye, N., Chen, H., Wold, E.A., Shi, P.-Y. and Zhou, J. (2016) Therapeutic Potential of Spirooxindoles as Antiviral Agents. ACS Infectious Diseases, 2, 382-392.
https://doi.org/10.1021/acsinfecdis.6b00041
[2]  Yu, B., Yu, D.-Q. and Liu, H.-M. (2015) Spirooxindoles: Promising Scaffolds for Anticancer Agents. European Journal of Medicinal Chemistry, 97, 673-698.
https://doi.org/10.1016/j.ejmech.2014.06.056
[3]  Yu, B., Yu, Z., Qi, P.-P., Yu, D.-Q. and Liu, H.-M. (2015) Discovery of Orally Active Anticancer Candidate CFI-400945 Derived from Biologically Promising Spirooxindoles: Success and Challenges. European Journal of Medicinal Chemistry, 95, 35-40.
https://doi.org/10.1016/j.ejmech.2015.03.020
[4]  Yildirim, M. and Suleiman, G. (2019) A Practical Access to New Pyrrolizine Carboxylates via KHMDS-Catalyzed Carbocyclizations. Synthetic Communications, 49, 463-481.
https://doi.org/10.1080/00397911.2018.1563796
[5]  Attalah, K.M., Abdalla, A.N., Aslam, A., Ahmed, M., Abourehab, M.A.S., ElSawy, N.A. and Gouda, A.M. (2020) Ethyl Benzoate Bearing Pyrrolizine/Indolizine Moieties: Design, Synthesis and Biological Evaluation of Anti-Inflammatory and Cytotoxic Activities. Bioorganic Chemistry, 94, Article ID: 103371.
https://doi.org/10.1016/j.bioorg.2019.103371
[6]  Gouda, A.M., Abdelazeem, A.H., Omar, H.A., Abdalla, A.N., Abourehab, M.A.S. and Ali, H.I. (2017) Pyrrolizines: Design, Synthesis, Anticancer Evaluation and Investigation of the Potential Mechanism of Action. Bioorganic & Medicinal Chemistry, 25, 5637-5651.
https://doi.org/10.1016/j.bmc.2017.08.039
[7]  Abbas, S.E., Awadallah, F.M., Ibrahim, N.A., Gouda, A.M. and Shehata, B.A. (2010) Design, Synthesis and Preliminary Evaluation of Some Novel [1,4]Diazepino [5,6-B]Pyrrolizine and 6-(2-Oxopyrrolidino)-1H-Pyrrolizine Derivatives as Anticonvulsant Agents. Medicinal Chemistry Research, 20, 1015-1023.
https://doi.org/10.1007/s00044-010-9429-8
[8]  Madrigal, D.A., Escalante, C.H., Gutiérrez-Rebolledo, G.A., Cristobal-Luna, J.M., Gómez-García, O., Hernández-Benitez, R.I., Esquivel-Campos, A.L., Pérez-Gutiérrez, S., Chamorro-Cevallos, G.A., Delgado, F. and Tamariz, J. (2019) Synthesis and Highly Potent Anti-Inflammatory Activity of Licofelone-and Ketorolac-Based 1-Arylpyrrolizin-3-Ones. Bioorganic & Medicinal Chemistry, 27, Article ID: 115053.
https://doi.org/10.1016/j.bmc.2019.115053
[9]  Shawky, A.M., Abourehab, M.A.S., Abdalla, A.N. and Gouda, A.M. (2020) Optimization of Pyrrolizine-Based Schiff Bases with 4-Thiazolidinone Motif: Design, Synthesis and Investigation of Cytotoxicity and Anti-Inflammatory Potency. European Journal of Medicinal Chemistry, 185, Article ID: 111780.
https://doi.org/10.1016/j.ejmech.2019.111780
[10]  Gouda, A.M. and Abdelazeem, A.H. (2016) An Integrated Overview on Pyrrolizines as Potential Anti-Inflammatory, Analgesic and Antipyretic Agents. European Journal of Medicinal Chemistry, 114, 257-292.
https://doi.org/10.1016/j.ejmech.2016.01.055
[11]  Ramsdell, H.S., Kedzierski, B. and Buhler, D.R. (1987) Microsomal Metabolism of Pyrrolizidine Alkaloids from Senecio jacobaea. Isolation and Quantification of 6,7-Dihydro-7-Hydroxy-1-Hydroxymethyl-5H-Pyrrolizine and N-Oxides by High Performance Liquid Chromatography. Drug Metabolism & Disposition, 15, 32-36.
https://doi.org/10.1016/0009-2797(86)90039-6
[12]  Segall, H.J., Dallas, J.L. and Haddon, W.F. (1984) Two Dihydropyrrolizine Alkaloid Metabolites Isolated from Mouse Hepatic Microsomes in Vitro. Drug Metabolism & Disposition, 12, 68-71.
[13]  Smith, L.W. and Culvenor, C.C. (1981) Plant Sources of Hepatotoxic Pyrrolizidine Alkaloids. Journal of Natural Products, 44, 129-152.
https://doi.org/10.1021/np50014a001
[14]  Hartmann, T. and Ober, D. (2000) Biosynthesis and Metabolism of Pyrrolizidine Alkaloids in Plants and Specialized Insect Herbivores. In: Leeper, F.J. and Vederas, J.C., Eds., Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids, Vol. 209, Springer, Berlin, 207-243.
https://doi.org/10.1007/3-540-48146-X_5
[15]  Fu, P.P., Xia, Q., Lin, G. and Chou, M.W. (2002) Genotoxic Pyrrolizidine Alkaloids—Mechanisms Leading to DNA Adduct Formation and Tumorigenicity. International Journal of Molecular Sciences, 3, 948-964.
https://doi.org/10.3390/i3090948
[16]  Li, N., Xia, Q., Ruan, J., Fu, P.P. and Lin, G. (2011) Hepatotoxicity and Tumorigenicity Induced by Metabolic Activation of Pyrrolizidine Alkaloids in Herbs. Current Drug Metabolism, 12, 823-834.
https://doi.org/10.2174/138920011797470119
[17]  Usuki, H., Nitoda, T., Ichikawa, M., Yamaji, N., Iwashita, T., Komura, H. and Kanzaki, H. (2008) TMG-Chitotriomycin, an Enzyme Inhibitor Specific for Insect and Fungal β-N-Acetylglucosaminidases, Produced by Actinomycete Streptomyces anulatus NBRC 13369. Journal of the American Chemical Society, 130, 4146-4152.
https://doi.org/10.1021/ja077641f
[18]  Kitamura, Y., Koshino, H., Nakamura, T., Tsuchida, A., Nitoda, T., Kanzaki, H., Matsuoka, K. and Takahashi, S. (2013) Total Synthesis of the Proposed Structure for Pochonicine and Determination of Its Absolute Configuration. Tetrahedron Letters, 54, 1456-1459.
https://doi.org/10.1016/j.tetlet.2013.01.015
[19]  Lammers, R.J., Witjes, J.A. and Inman, B.A. (2011) The Role of a Combined Regimen with Intravesical Chemotherapy and Hyperthermia in the Management of Non-Muscle-Invasive Bladder Cancer: Asystematic Review. European Urology, 60, 81-93.
https://doi.org/10.1016/j.eururo.2011.04.023
[20]  Bradner, W.T. (2001) Mitomycin C: A Clinical Update. Cancer Treatment Reviews, 27, 35-50.
https://doi.org/10.1053/ctrv.2000.0202
[21]  Woo, J., Sigurdsson, S.T. and Hopkins, P.B. (1993) DNA Interstrand Cross-Linking Reactions of Pyrrole-Derived, Bifunctional Electrophiles: Evidence for a Common Target Site in DNA. Journal of the American Chemical Society, 115, 3407-3415.
https://doi.org/10.1021/ja00062a002
[22]  Tomasz, M. (1995) Mitomycin C: Small, Fast and Deadly (but Very Selective). Chemistry & Biology, 2, 575-579.
https://doi.org/10.1016/1074-5521(95)90120-5
[23]  Buechter, D.D. and Thurston, D.E. (1987) Studies on the Pyrrolizidine Antitumor Agent, Clazamycin: Interconversion of Clazamycins A and B. Journal of Natural Products, 50, 360-367.
https://doi.org/10.1021/np50051a004
[24]  Sugie, Y., Hirai, H., Kachi-Tonai, H., Kim, Y.J., Kojima, Y., Shiomi, Y., Sugiura, A., Suzuki, Y., Yoshikawa, N., Brennan, L., Duignan, J., Huang, L.H., Sutcliffe, J. and Kojima, N. (2001) New Pyrrolizidinone Anti-Biotics CJ-16, 264 and CJ-16, 367. The Journal of Antibiotics, 54, 917-925.
https://doi.org/10.7164/antibiotics.54.917
[25]  Muchowski, J.M., Unger, S.H., Ackrell, J., Cheung, P., Cooper, G.F., Cook, J., Gallegra, P., Halpern, O., Koehler, R., Kluge, A.F., et al. (1985) Synthesis and Antiinflammatory and Analgesic Activity of 5-Aroyl-1,2-Dihydro-3H-Pyrrolo[1,2-A] Pyrrole-1-Carboxylic Acids and Related Compounds. Journal of Medicinal Chemistry, 28, 1037-1049.
https://doi.org/10.1021/jm00146a011
[26]  Jett, M.F., Ramesha, C.S., Brown, C.D., Chiu, S., Emmett, C., Voronin, T., Sun, T., O’Yang, C., Hunter, J.C., Eglen, R.M. and Johnson, R.M. (1999) Characterization of the Analgesic and Anti-Inflammatory Activities of Ketorolac and Its Enantiomers in the Rat. Journal of Pharmacology and Experimental Therapeutics, 288, 1288-1297.
[27]  Tries, S. and Laufer, S. (2001) The Pharmacological Profile of ML3000: A New Pyrrolizine Derivative Inhibiting the Enzymes Cyclooxygenase and 5-Lipoxygenase. Inflammopharmacology, 9, 113-124.
https://doi.org/10.1163/156856001300248380
[28]  Fischer, L., Hornig, M., Pergola, C., Meindl, N., Franke, L., Tanrikulu, Y., Dodt, G., Schneider, G., Steinhilber, D. and Werz, O. (2009) The Molecular Mechanism of the Inhibition by Licofelone of the Biosynthesis of 5‐Lipoxygenase Products. British Journal of Pharmacology, 152, 471-480.
https://doi.org/10.1038/sj.bjp.0707416
[29]  Algate, D.R., Augustin, J., Atterson, P.R., Beard, D.J., Jobling, C.M., Laufer, S., Munt, P.L. and Tries, S. (1995) General Pharmacology of [2,2-Dimethyl-6-(4-Chlorophenyl)-7-Phenyl-2,3-Dihydro-1H-Pyrroliz-Ine-5-Yl]-Acetic Acid in Experimental Animals. Arzneimittelforschung, 45, 159-165.
[30]  Heidemann, A., Tries, S., Laufer, S. and Augustin, J. (1995) Studies on the in Vitro and in Vivo Genotoxicity of [2,2-Dimethyl-6-(4-Chlorophenyl)-7-Phenyl-2,3-Dihydro-1H Pyrrolizine-5-Yl]-Acetic Acid. Arzneimittelforschung, 45, 486-490.
[31]  Prasad, S., Sajja, R.K., Naik, P. and Cucullo, L. (2014). Diabetes Mellitus and Blood-Brain Barrier Dysfunction: An Overview. Journal of Pharmacovigilance, 2, Article 1000125.
https://doi.org/10.4172/2329-6887.1000125
[32]  Schr?der, F., Franke, S., Francke, W., Baumann, H., Kaib, M., Pasteels, J.M. and Daloze, D. (1996) A New Family of Tricyclic Alkaloids from Myrmicaria Ants. Tetrahedron, 52, 13539-13546.
https://doi.org/10.1016/0040-4020(96)00834-4
[33]  J?rgensen, A.S., Jacobsen, P., Christiansen, L.B., Bury, P.S., Kanstrup, A., Thorpe, S.M., Naerum, L. and Bioorg, K.W. (2000) Synthesis and Estrogen Receptor Binding Affinities of Novel Pyrrolo[2,1,5-cd]Indolizine Derivatives. Bioorganic & Medicinal Chemistry Letters, 10, 2383-2386.
https://doi.org/10.1016/S0960-894X(00)00474-1
[34]  J?rgensen, A., Jacobsen, P., Christiansen, L., Bury, P., Kanstrup, A., Thorpe, S., Bain, S., Naerum, L. and Bioorg, K.W. (2000) Synthesis and Pharmacology of a Novel Pyrrolo[2,1,5-cd]Indolizine (NNC 45-0095), a High Affinity Non-Steroidal Agonist for the Estrogen Receptor. Bioorganic & Medicinal Chemistry Letters, 10, 399-402.
https://doi.org/10.1016/S0960-894X(00)00015-9
[35]  Daly, J.W. (2003) Ernest Guenther Award in Chemistry of Natural Products. Amphibian Skin:? A Remarkable Source of Biologically Active Arthropod Alkaloids. Journal of Medicinal Chemistry, 46, 445-452.
https://doi.org/10.1021/jm0204845
[36]  Nelson, J.L. and Takeo, S. (1969) Transannular Route for Stereospecific Synthesis. (±)-Isoretronecanol. The Journal of Organic Chemistry, 34, 1066-1070.
https://doi.org/10.1021/jo01256a064
[37]  Michael, E.G., John, N.B. and Jeffrey, M. (1982) Hydroboration-Carbon Monoxide Insertion of Bis-Olefinic Amine Derivatives. Synthesis of .Delta.-Coniceine, Pyrrolizidine, (.±.)-Heliotridane, and (.±.)-Pseudoheliotridane. The Journal of Organic Chemistry, 47, 1494-1500.
https://doi.org/10.1021/jo00347a024
[38]  Kathiravan, S., Ramesh, E. and Raghunathan, R. (2009) Synthesis of Pyrrolo[2,3-A]Pyrrolizine and Pyrrolizine[2,3-A]Pyrrolizine Derived from Allyl Derivatives of Baylis-Hillman Adducts through Intramolecular 1,3-Dipolar Cycloaddition. Tetrahedron Letters, 50, 2389-2391.
https://doi.org/10.1016/j.tetlet.2009.02.222
[39]  Hirner, J.J., Roth, K.E., Shi, Y. and Blum, S.A. (2012) Mechanistic Studies of Azaphilic versus Carbophilic Activation by Gold(I) in the Gold/Palladium Dual-Catalyzed Rearrangement of Alkenyl Vinyl Aziridines. Organometallics, 31, 6843-6850.
https://doi.org/10.1021/om300671j
[40]  Ghosh, A., Walker, J.A., Ellern, A. and Stanley, L.M. (2016) Coupling Catalytic Alkene Hydroacylation and α-Arylation: Enantioselective Synthesis of Heterocyclic Ketones with α-Chiral Quaternary Stereocenters. ACS Catalysis, 6, 2673-2680.
https://doi.org/10.1021/acscatal.6b00365
[41]  Kumar, P., Rahman, M.A., Haque, A. and Singh Yadav, J. (2021) A Transition Metal-Catalyzed Enyne Metathesis for the Preparation of Pyrrolizidine Alkaloid Core: Application Towards the Total Synthesis of Stemaphylline. Tetrahedron Letters, 68, Article ID: 152906.
https://doi.org/10.1016/j.tetlet.2021.152906
[42]  Unaleroglu, C., Aytac, S. and Temelli, B. (2007) Copper Triflate Catalyzed Regioselective Alkylation of Pyrrole: Conversion of 2-Alkylated Pyrroles to Novel Pyrrolizine Derivatives by Self-Cyclization. Heterocycles, 71, 2427-2440.
https://doi.org/10.3987/COM-07-11137
[43]  Manjappa, K.B., Jhang, W.-F., Huang, S.-Y. and Yang, D.-Y. (2014) Microwave-Promoted, Metal-and Catalyst-Free Decarboxylative α,β-Difunctionlization of Secondary α-Amino Acids via Pseudo-Four-Component Reactions. Organic Letters, 16, 5690-5693.
https://doi.org/10.1021/ol5027574
[44]  Yamada, N., Hirata, G., Onodera, G. and Kimura, M. (2015) Efficient Synthesis of Pyrrolizidine by Pd-Catalyzed Consecutive Double Amphiphilic Allylation of Nitrile. Tetrahedron, 71, 6541-6546.
https://doi.org/10.1016/j.tet.2015.04.110
[45]  Nebe, M.M., Kucukdisli, M. and Opatz, T. (2016) 3,4-Dihydro-2H-Pyrrole-2-Carbonitriles: Useful Intermediates in the Synthesis of Fused Pyrroles and 2,2’-Bipyrroles. The Journal of Organic Chemistry, 81, 4112-4121.
https://doi.org/10.1021/acs.joc.6b00393
[46]  Karmakar, R., Mukhopadhyay, C. (2018) Regio‐ and Stereoselective Multicomponent Synthesis of Novel Chromeno‐Annulated Pyrrolizine and Thiazolizine Scaffolds via 1,3‐Dipolar Cycloaddition Reactions. ChemistrySelect, 3, 8581-8586.
https://doi.org/10.1002/slct.201801533
[47]  Zhan, D., Yao, B., Huan, C., Lu, J., Ji, Y. and Zhang, X. (2023) A Step-Economical and Diastereoselective Synthesis of Dispirooxindole-Pyrrolizines Bearing Seven Stereocenters. Tetrahedron Letters, 126, Article ID: 154638.
https://doi.org/10.1016/j.tetlet.2023.154638

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413