|
细胞分裂素转运蛋白在细胞分裂素平衡和信号分布中的作用
|
Abstract:
细胞分裂素(CK)是一类可移动的腺嘌呤衍生物,它们作为化学信号调节与植物发育和胁迫反应有关的各种生物过程。它们的合成、稳态和信号感知会引起复杂的细胞内交通、细胞间移动以及短距离和长距离转运。近二十年来,膜转运蛋白的亚群已被识别并参与CK以及相关腺苷酸的转运。本文旨在回顾参与细胞分裂素运输和易位的转运蛋白探索的主要进展,讨论它们在细胞分裂素介导的旁分泌和远距离通讯中的功能意义,并强调一些知识空白和开放性问题,以全面理解膜转运蛋白在控制细胞分裂素物种时空分布中的分子机制。
Cytokinins (CKs) are a group of mobile adenine derivatives that act as chemical signals regulating a variety of biological processes implicated in plant development and stress responses. Their synthesis, homeostasis, and signaling perception evoke complicated intracellular traffic, intercellular movement, and in short- and long-distance translocation. Over nearly two decades, subsets of membrane transporters have been recognized and implicated in the transport of CKs as well as the related adenylates. In this review, we aim to recapitulate the key progresses in exploration of the transporter proteins involved in cytokinin traffic and translocation, discuss their functional implications in the cytokinin-mediated paracrine and long-distance communication, and highlight some knowledge gaps and open issues toward comprehensively understanding the molecular mechanism of membrane transporters in controlling spatiotemporal distribution of cytokinin species.
[1] | Zhao, J., Ding, B., Zhu, E., et al. (2021) Phloem Unloading via the Apoplastic Pathway Is Essential for Shoot Distribution of Root-Synthesized Cytokinins. Plant Physiology, 186, 2111-2123. https://doi.org/10.1093/plphys/kiab188 |
[2] | He, Q., Yuan, R., Zhang, T., et al. (2022) Arabidopsis TIE1 and TIE2 Transcriptional Repressors Dampen Cytokinin Response during Root Development. Science Advances, 8, eabn5057. https://doi.org/10.1126/sciadv.abn5057 |
[3] | Osugi, A. and Sakakibara, H. (2015) Q&A: How Do Plants Respond to Cytokinins and What Is Their Importance? BMC Biology, 13, Article No. 102. https://doi.org/10.1186/s12915-015-0214-5 |
[4] | Hwang, I., Sheen, J. and Müller, B. (2012) Cytokinin Signaling Networks. Annual Review of Plant Biology, 63, 353-380. https://doi.org/10.1146/annurev-arplant-042811-105503 |
[5] | Argueso, C.T., Ferreira, F.J., Epple, P., et al. (2012) Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity. PLOS Genetics, 8, e1002448. https://doi.org/10.1371/journal.pgen.1002448 |
[6] | Zancani, M., Braidot, E., Filippi, A., et al. (2020) Structural and Functional Properties of Plant Mitochondrial F-ATP Synthase. Mitochondrion, 53, 178-193. https://doi.org/10.1016/j.mito.2020.06.001 |
[7] | Sakakibara, H. (2005) Cytokinin Biosynthesis and Regulation. Vitamins and Hormones, 72, 271-287. https://doi.org/10.1016/S0083-6729(05)72008-2 |
[8] | Takei, K., Sakakibara, H. and Sugiyama, T. (2001) Identification of Genes Encoding Adenylate Isopentenyltransferase, a Cytokinin Biosynthesis Enzyme, in Arabidopsis Thaliana. The Journal of Biological Chemistry, 276, 26405-26410. https://doi.org/10.1074/jbc.M102130200 |
[9] | Kakimoto, T. (2001) Identification of Plant Cytokinin Biosynthetic Enzymes as Dimethylallyl Diphosphate: ATP/ADP Isopentenyltransferases. Plant & Cell Physiology, 42, 677-685. https://doi.org/10.1093/pcp/pce112 |
[10] | Takei, K., Yamaya, T. and Sakakibara, H. (2004) Arabidopsis CYP735A1 and CYP735A2 Encode Cytokinin Hydroxylases That Catalyze the Biosynthesis of Trans-Zeatin. The Journal of Biological Chemistry, 279, 41866-41872. https://doi.org/10.1074/jbc.M406337200 |
[11] | Kiba, T., Takei, K., Kojima, M., et al. (2013) Side-Chain Modification of Cytokinins Controls Shoot Growth in Arabidopsis. Developmental Cell, 27, 452-461. https://doi.org/10.1016/j.devcel.2013.10.004 |
[12] | Tokunaga, H., Kojima, M., Kuroha, T., et al. (2012) Arabidopsis Lonely Guy (LOG) Multiple Mutants Reveal a Central Role of the LOG-Dependent Pathway in Cytokinin Activation. The Plant Journal, 69, 355-365. https://doi.org/10.1111/j.1365-313X.2011.04795.x |
[13] | Kuroha, T., Tokunaga, H., Kojima, M., et al. (2009) Functional Analyses of LONELY GUY Cytokinin-Activating Enzymes Reveal the Importance of the Direct Activation Pathway in Arabidopsis. Plant Cell, 21, 3152-3169. https://doi.org/10.1105/tpc.109.068676 |
[14] | Matsumoto-Kitano, M., Kusumoto, T., Tarkowski, P., et al. (2008) Cytokinins Are Central Regulators of Cambial Activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 20027-20031. https://doi.org/10.1073/pnas.0805619105 |
[15] | Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., et al. (2006) Roles of Arabidopsis ATP/ADP Isopentenyltransferases and TRNA Isopentenyltransferases in Cytokinin Biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 16598-16603. https://doi.org/10.1073/pnas.0603522103 |
[16] | Kurakawa, T., Ueda, N., Maekawa, M., et al. (2007) Direct Control of Shoot Meristem Activity by a Cytokinin-Activating Enzyme. Nature, 445, 652-655. https://doi.org/10.1038/nature05504 |
[17] | Samanovic, M.I., Tu, S., Novák, O., et al. (2015) Proteasomal Control of Cytokinin Synthesis Protects Mycobacterium Tuberculosis against Nitric Oxide. Molecular Cell, 57, 984-994. https://doi.org/10.1016/j.molcel.2015.01.024 |
[18] | Radhika, V., Ueda, N., Tsuboi, Y., et al. (2015) Methylated Cytokinins from the Phytopathogen Rhodococcus Fascians Mimic Plant Hormone Activity. Plant Physiology, 169, 1118-1126. https://doi.org/10.1104/pp.15.00787 |
[19] | Hinsch, J., Vrabka, J., Oeser, B., et al. (2015) De Novo Biosynthesis of Cytokinins in the Biotrophic Fungus Claviceps Purpurea. Environmental Microbiology, 17, 2935-2951. https://doi.org/10.1111/1462-2920.12838 |
[20] | Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Dephosphorylation of Cytokinin Ribonucleotide by 5’-Nucleotidases from Wheat Germ Cytosol. Plant Physiology, 67, 494-498. https://doi.org/10.1104/pp.67.3.494 |
[21] | Chen, C.M. and Kristopeit, S.M. (1981) Metabolism of Cytokinin: Deribosylation of Cytokinin Ribonucleoside by Adenosine Nucleosidase from Wheat Germ Cells. Plant Physiology, 68, 1020-1023. https://doi.org/10.1104/pp.68.5.1020 |
[22] | Wu, B., Meng, J., Liu, H., et al. (2023) Suppressing a Phosphohydrolase of Cytokinin Nucleotide Enhances Grain Yield in Rice. Nature Genetics, 55, 1381-1389. https://doi.org/10.1038/s41588-023-01454-3 |
[23] | Kojima, M., Makita, N., Miyata, K., et al. (2023) A Cell Wall-Localized Cytokinin/Purine Riboside Nucleosidase Is Involved in Apoplastic Cytokinin Metabolism in Oryza Sativa. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217708120. https://doi.org/10.1073/pnas.2217708120 |
[24] | Kasahara, H., Takei, K., Ueda, N., et al. (2004) Distinct Isoprenoid Origins of Cis-and Trans-Zeatin Biosyntheses in Arabidopsis. The Journal of Biological Chemistry, 279, 14049-14054. https://doi.org/10.1074/jbc.M314195200 |
[25] | Sharma, A., Prakash, S. and Chattopadhyay, D. (2022) Killing Two Birds with a Single Stone-Genetic Manipulation of Cytokinin Oxidase/Dehydrogenase (CKX) Genes for Enhancing Crop Productivity and Amelioration of Drought Stress Response. Frontiers in Genetics, 13, Article 941595. https://doi.org/10.3389/fgene.2022.941595 |
[26] | Schmülling, T., Werner, T., Riefler, M., et al. (2003) Structure and Function of Cytokinin Oxidase/Dehydrogenase Genes of Maize, Rice, Arabidopsis and Other Species. Journal of Plant Research, 116, 241-252. https://doi.org/10.1007/s10265-003-0096-4 |
[27] | Houba-Hérin, N., Pethe, C., D’alayer, J., et al. (1999) Cytokinin Oxidase from Zea Mays: Purification, CDNA Cloning and Expression in Moss Protoplasts. The Plant Journaly, 17, 615-626. https://doi.org/10.1046/j.1365-313X.1999.00408.x |
[28] | Morris, R.O., Bilyeu, K.D., Laskey, J.G., et al. (1999) Isolation of a Gene Encoding a Glycosylated Cytokinin Oxidase from Maize. Biochemical and Biophysical Research Communications, 255, 328-333. https://doi.org/10.1006/bbrc.1999.0199 |
[29] | Werner, T., Motyka, V., Laucou, V., et al. (2003) Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. Plant Cell, 15, 2532-2550. https://doi.org/10.1105/tpc.014928 |
[30] | Bartrina, I., Otto, E., Strnad, M., et al. (2011) Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis Thaliana. Plant Cell, 23, 69-80. https://doi.org/10.1105/tpc.110.079079 |
[31] | Fusconi, A. (2014) Regulation of Root Morphogenesis in Arbuscular Mycorrhizae: What Role Do Fungal Exudates, Phosphate, Sugars and Hormones Play in Lateral Root Formation? Annals of Botany, 113, 19-33. https://doi.org/10.1093/aob/mct258 |
[32] | Albacete, A., Ghanem, M.E., Martínez-Andújar, C., et al. (2008) Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. Journal of Experimental Botany, 59, 4119-4131. https://doi.org/10.1093/jxb/ern251 |
[33] | Wang, Y., Li, K. and Li, X. (2009) Auxin Redistribution Modulates Plastic Development of Root System Architecture Under Salt Stress in Arabidopsis Thaliana. Journal of Plant Physiology, 166, 1637-1645. https://doi.org/10.1016/j.jplph.2009.04.009 |
[34] | Jeon, J., Kim, N.Y., Kim, S., et al. (2010) A Subset of Cytokinin Two-Component Signaling System Plays a Role in Cold Temperature Stress Response in Arabidopsis. The Journal of Biological Chemistry, 285, 23371-23386. https://doi.org/10.1074/jbc.M109.096644 |
[35] | Miyawaki, K., Matsumoto-Kitano, M. and Kakimoto, T. (2004) Expression of Cytokinin Biosynthetic Isopentenyltransferase Genes in Arabidopsis: Tissue Specificity and Regulation by Auxin, Cytokinin, and Nitrate. The Plant Journal, 37, 128-138. https://doi.org/10.1046/j.1365-313X.2003.01945.x |
[36] | Huo, R., Liu, Z., Yu, X., et al. (2020) The Interaction Network and Signaling Specificity of Two-Component System in Arabidopsis. International Journal of Molecular Sciences, 21, Article 4898. https://doi.org/10.3390/ijms21144898 |
[37] | Kroll, C.K. and Brenner, W.G. (2020) Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. Frontiers in Plant Science, 11, Article 604489. https://doi.org/10.3389/fpls.2020.604489 |
[38] | Müller, B. and Sheen, J. (2007) Cytokinin Signaling Pathway. Science’s STKE, 2007, cm4. https://doi.org/10.1126/stke.4072007cm4 |
[39] | Yamada, H., Suzuki, T., Terada, K., et al. (2001) The Arabidopsis AHK4 Histidine Kinase Is a Cytokinin-Binding Receptor That Transduces Cytokinin Signals across the Membrane. Plant & Cell Physiology, 42, 1017-1023. https://doi.org/10.1093/pcp/pce127 |
[40] | Kieber, J.J. and Schaller, G.E. (2018) Cytokinin Signaling in Plant Development. Development, 145, dev149344. https://doi.org/10.1242/dev.149344 |
[41] | Caesar, K., Thamm, A.M., Witthoft, J., et al. (2011) Evidence for the Localization of the Arabidopsis Cytokinin Receptors AHK3 and AHK4 in the Endoplasmic Reticulum. Journal of Experimental Botany, 62, 5571-5580. https://doi.org/10.1093/jxb/err238 |
[42] | Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., et al. (2017) Opposite Roles of the Arabidopsis Cytokinin Receptors AHK2 and AHK3 in the Expression of Plastid Genes and Genes for the Plastid Transcriptional Machinery during Senescence. Plant Molecular Biology, 93, 533-546. https://doi.org/10.1007/s11103-016-0580-6 |
[43] | Sun, L., Zhang, Q., Wu, J., et al. (2014) Two Rice Authentic Histidine Phosphotransfer Proteins, OsAHP1 and OsAHP2, Mediate Cytokinin Signaling and Stress Responses in Rice. Plant Physiology, 165, 335-345. https://doi.org/10.1104/pp.113.232629 |
[44] | Lomin, S.N., Yonekura-Sakakibara, K., Romanov, G.A., et al. (2011) Ligand-Binding Properties and Subcellular Localization of Maize Cytokinin Receptors. Journal of Experimental Botany, 62, 5149-5159. https://doi.org/10.1093/jxb/err220 |
[45] | Ding, W., Tong, H., Zheng, W., et al. (2017) Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. Frontiers in Plant Science, 8, Article 88. https://doi.org/10.3389/fpls.2017.00088 |
[46] | Wulfetange, K., Lomin, S.N., Romanov, G.A., et al. (2011) the Cytokinin Receptors of Arabidopsis Are Located Mainly to the Endoplasmic Reticulum. Plant Physiology, 156, 1808-1818. https://doi.org/10.1104/pp.111.180539 |
[47] | Hejátko, J., Ryu, H., Kim, G.T., et al. (2009) the Histidine Kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 Regulate Vascular Tissue Development in Arabidopsis Shoots. Plant Cell, 21, 2008-2021. https://doi.org/10.1105/tpc.109.066696 |
[48] | Hwang, I. and Sheen, J. (2001) Two-Component Circuitry in Arabidopsis Cytokinin Signal Transduction. Nature, 413, 383-389. https://doi.org/10.1038/35096500 |
[49] | Romanov, G.A., Lomin, S.N. and Schmülling, T. (2018) Cytokinin Signaling: from the ER or from the PM? That Is the Question! The New Phytologist, 218, 41-53. https://doi.org/10.1111/nph.14991 |
[50] | Lomin, S.N., Krivosheev, D.M., Steklov, M.Y., et al. (2012) Receptor Properties and Features of Cytokinin Signaling. Acta Naturae, 4, 31-45. https://doi.org/10.32607/20758251-2012-4-3-31-45 |
[51] | Jeon, J. and Kim, J. (2013) Arabidopsis Response Regulator1 and Arabidopsis Histidine Phosphotransfer Protein2 (AHP2), AHP3, and AHP5 Function in Cold Signaling. Plant Physiology, 161, 408-424. https://doi.org/10.1104/pp.112.207621 |
[52] | Hirose, N., Makita, N., Kojima, M., et al. (2007) Overexpression of a Type—A Response Regulator Alters Rice Morphology and Cytokinin Metabolism. Plant & Cell Physiology, 48, 523-539. https://doi.org/10.1093/pcp/pcm022 |
[53] | To, J.P. and Kieber, J.J. (2008) Cytokinin Signaling: Two-Components and More. Trends in Plant Science, 13, 85-92. https://doi.org/10.1016/j.tplants.2007.11.005 |
[54] | Horák, J., Grefen, C., Berendzen, K.W., et al. (2008) The Arabidopsis Thaliana Response Regulator ARR22 Is a Putative AHP Phospho-Histidine Phosphatase Expressed in the Chalaza of Developing Seeds. BMC Plant Biology, 8, Article No. 77. https://doi.org/10.1186/1471-2229-8-77 |
[55] | Feng, J., Shi, Y., Yang, S., et al. (2017) 3—Cytokinins. In: Li, J., Li, C. and Smith, S.M., Eds., Hormone Metabolism and Signaling in Plants, Academic Press, Cambridge, 77-106. https://doi.org/10.1016/B978-0-12-811562-6.00003-7 |
[56] | Perilli, S., Moubayidin, L. and Sabatini, S. (2010) The Molecular Basis of Cytokinin Function. Current Opinion in Plant Biology, 13, 21-26. https://doi.org/10.1016/j.pbi.2009.09.018 |
[57] | Wybouw, B. and De Rybel, B. (2019) Cytokinin—A Developing Story. Trends in Plant Science, 24, 177-185. https://doi.org/10.1016/j.tplants.2018.10.012 |
[58] | Ha, S., Vankova, R., Yamaguchi-Shinozaki, K., et al. (2012) Cytokinins: Metabolism and Function in Plant Adaptation to Environmental Stresses. Trends in Plant Science, 17, 172-179. https://doi.org/10.1016/j.tplants.2011.12.005 |
[59] | Takei, K., Ueda, N., Aoki, K., et al. (2004) AtIPT3 Is a Key Determinant of Nitrate-Dependent Cytokinin Biosynthesis in Arabidopsis. Plant & Cell Physiology, 45, 1053-1062. https://doi.org/10.1093/pcp/pch119 |
[60] | Kang, J., Lee, Y., Sakakibara, H. and Martinoia, E. (2017) Cytokinin Transporters: GO and STOP in Signaling. Trends in Plant Science, 22, 455-461. https://doi.org/10.1016/j.tplants.2017.03.003 |
[61] | Kamada-Nobusada, T. and Sakakibara, H. (2009) Molecular Basis for Cytokinin Biosynthesis. Phytochemistry, 70, 444-449. https://doi.org/10.1016/j.phytochem.2009.02.007 |
[62] | Mok, D.W. and Mok, M.C. (2001) Cytokinin Metabolism and Action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89-118. https://doi.org/10.1146/annurev.arplant.52.1.89 |
[63] | Kakimoto, T. (2003) Perception and Signal Transduction of Cytokinins. Annual Review of Plant Biology, 54, 605-627. https://doi.org/10.1146/annurev.arplant.54.031902.134802 |
[64] | Zhang, K., Novak, O., Wei, Z., et al. (2014) Arabidopsis ABCG14 Protein Controls the Acropetal Translocation of Root-Synthesized Cytokinins. Nature Communications, 5, Article No. 3274. https://doi.org/10.1038/ncomms4274 |
[65] | Sasaki, T., Suzaki, T., Soyano, T., et al. (2014) Shoot-Derived Cytokinins Systemically Regulate Root Nodulation. Nature Communications, 5, Article No. 4983. https://doi.org/10.1038/ncomms5983 |
[66] | Liu, C.J., Zhao, Y. and Zhang, K. (2019) Cytokinin Transporters: Multisite Players in Cytokinin Homeostasis and Signal Distribution. Frontiers in Plant Science, 10, Article 693. https://doi.org/10.3389/fpls.2019.00693 |
[67] | Do, T.H, T., Martinoia, E., Lee, Y., et al. (2021) 2021 Update on ATP-Binding Cassette (ABC) Transporters: How They Meet the Needs of Plants. Plant Physiology, 187, 1876-1892. https://doi.org/10.1093/plphys/kiab193 |
[68] | Zürcher, E., Liu, J., Di, Donato, M., et al. (2016) Plant Development Regulated by Cytokinin Sinks. Science, 353, 1027-1030. https://doi.org/10.1126/science.aaf7254 |
[69] | BüRkle, L., Cedzich, A., D?pke, C., et al. (2003) Transport of Cytokinins Mediated by Purine Transporters of the PUP Family Expressed in Phloem, Hydathodes, and Pollen of Arabidopsis. The Plant Journal, 34, 13-26. https://doi.org/10.1046/j.1365-313X.2003.01700.x |
[70] | Tessi, T.M., Maurino, V.G., Shahriari, M., et al. (2023) AZG1 Is A Cytokinin Transporter That Interacts with Auxin Transporter PIN1 and Regulates the Root Stress Response. The New Phytologist, 238, 1924-1941. https://doi.org/10.1111/nph.18879 |
[71] | Tessi, T.M., Brumm, S., Winklbauer, E., et al. (2021) Arabidopsis AZG2 Transports Cytokinins in Vivo and Regulates Lateral Root Emergence. The New Phytologist, 229, 979-993. https://doi.org/10.1111/nph.16943 |
[72] | Girke, C., Daumann, M., Niopek-Witz, S., et al. (2014) Nucleobase and Nucleoside Transport and Integration into Plant Metabolism. Frontiers in Plant Science, 5, Article 443. https://doi.org/10.3389/fpls.2014.00443 |
[73] | Zhang, Y., Berman, A. and Shani, E. (2023) Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 74, 453-479. https://doi.org/10.1146/annurev-arplant-070722-015329 |
[74] | Verrier, P.J., Bird, D., Burla, B., et al. (2008) Plant ABC Proteins—A Unified Nomenclature and Updated Inventory. Trends in Plant Science, 13, 151-159. https://doi.org/10.1016/j.tplants.2008.02.001 |
[75] | Higgins, C.F. (1992) ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology, 8, 67-113. https://doi.org/10.1146/annurev.cb.08.110192.000435 |
[76] | Kieber, J.J. and Schaller, G.E. (2014) Cytokinins. The Arabidopsis Book, 12, e0168. https://doi.org/10.1199/tab.0168 |
[77] | Chatfield, S.P., Stirnberg, P., Forde, B.G., et al. (2000) the Hormonal Regulation of Axillary Bud Growth in Arabidopsis. The Plant Journal, 24, 159-169. https://doi.org/10.1046/j.1365-313x.2000.00862.x |
[78] | Ko, D., Kang, J., Kiba, T., et al. (2014) Arabidopsis ABCG14 Is Essential for the Root-to-Shoot Translocation of Cytokinin. Proceedings of the National Academy of Sciences of the United States of America, 111, 7150-7155. https://doi.org/10.1073/pnas.1321519111 |
[79] | Zhao, J., Yu, N., Ju, M., et al. (2019) ABC Transporter OsABCG18 Controls the Shootward Transport of Cytokinins and Grain Yield in Rice. Journal of Experimental Botany, 70, 6277-6291. https://doi.org/10.1093/jxb/erz382 |
[80] | Durán-Medina, Y., Díaz-Ramírez, D. and Marsch-Martínez, N. (2017) Cytokinins on the Move. Frontiers in Plant Science, 8, Article 146. https://doi.org/10.3389/fpls.2017.00146 |
[81] | Gillissen, B., Bürkle, L., André, B., et al. (2000) A New Family of High-Affinity Transporters for Adenine, Cytosine, and Purine Derivatives in Arabidopsis. Plant Cell, 12, 291-300. https://doi.org/10.1105/tpc.12.2.291 |
[82] | Xiao, Y., Zhang, J., Yu, G., et al. (2020) Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 11, Article 618560. https://doi.org/10.3389/fpls.2020.618560 |
[83] | Hu, Y., Patra, P., Pisanty, O., et al. (2023) Multi-Knock—A Multi-Targeted Genome-Scale CRISPR Toolbox to Overcome Functional Redundancy in Plants. Nature Plants, 9, 572-587. https://doi.org/10.1038/s41477-023-01374-4 |
[84] | Cecchetto, G., Amillis, S., Diallinas, G., et al. (2004) The AzgA Purine Transporter of Aspergillus nidulans. Characterization of a Protein Belonging to a New Phylogenetic Cluster. The Journal of Biological Chemistry, 279, 3132-3141. https://doi.org/10.1074/jbc.M308826200 |
[85] | Mansfield, T.A., Schultes, N.P. and Mourad, G.S. (2009) AtAzg1 and AtAzg2 Comprise a Novel Family of Purine Transporters in Arabidopsis. FEBS Letters, 583, 481-486. https://doi.org/10.1016/j.febslet.2008.12.048 |
[86] | Gray, J.H., Owen, R.P. and Giacomini, K.M. (2004) The Concentrative Nucleoside Transporter Family, SLC28. Pflügers Archiv, 447, 728-734. https://doi.org/10.1007/s00424-003-1107-y |
[87] | Cabrita, M.A., Baldwin, S.A., Young, J.D., et al. (2002) Molecular Biology and Regulation of Nucleoside and Nucleobase Transporter Proteins in Eukaryotes and Prokaryotes. Biochemistry and Cell Biology, 80, 623-638. https://doi.org/10.1139/o02-153 |
[88] | Ritzel, M.W., Ng, A.M., Yao, S.Y., et al. (2001) Molecular Identification and Characterization of Novel Human and Mouse Concentrative Na -Nucleoside Cotransporter Proteins (HCNT3 and MCNT3) Broadly Selective for Purine and Pyrimidine Nucleosides (System Cib). The Journal of Biological Chemistry, 276, 2914-2927. https://doi.org/10.1074/jbc.M007746200 |
[89] | Hyde, R.J., Cass, C.E., Young, J.D., et al. (2001) The ENT Family of Eukaryote Nucleoside and Nucleobase Transporters: Recent Advances in the Investigation of Structure/Function Relationships and the Identification of Novel Isoforms. Molecular Membrane Biology, 18, 53-63. https://doi.org/10.1080/09687680118799 |
[90] | Hirose, N., Makita, N., Yamaya, T., et al. (2005) Functional Characterization and Expression Analysis of a Gene, OsENT2, Encoding an Equilibrative Nucleoside Transporter in Rice Suggest a Function in Cytokinin Transport. Plant Physiology, 138, 196-206. https://doi.org/10.1104/pp.105.060137 |
[91] | Hirose, N., Takei, K., Kuroha, T., et al. (2008) Regulation of Cytokinin Biosynthesis, Compartmentalization and Translocation. Journal of Experimental Botany, 59, 75-83. https://doi.org/10.1093/jxb/erm157 |
[92] | Cornelius, S., Traub, M., Bernard, C., et al. (2012) Nucleoside Transport across the Plasma Membrane Mediated by Equilibrative Nucleoside Transporter 3 Influences Metabolism of Arabidopsis Seedlings. Plant Biology, 14, 696-705. https://doi.org/10.1111/j.1438-8677.2012.00562.x |
[93] | Korobova, A., Kuluev, B., M?hlmann, T., et al. (2021) Limitation of Cytokinin Export to the Shoots by Nucleoside Transporter ENT3 and Its Linkage with Root Elongation in Arabidopsis. Cells, 10, Article 350. https://doi.org/10.3390/cells10020350 |
[94] | Sun, J., Hirose, N., Wang, X., et al. (2005) Arabidopsis SOI33/AtENT8 Gene Encodes A Putative Equilibrative Nucleoside Transporter That Is Involved in Cytokinin Transport in Planta. Journal of Integrative Plant Biology, 47, 588-603. https://doi.org/10.1111/j.1744-7909.2005.00104.x |
[95] | Letham, D.S. (2019) Cytokinins as Phytohormones—Sites of Biosynthesis, Translocation, and Function of Translocated Cytokinin. In: Mok, D.W.S., Ed., Cytokinins, CRC Press, Boca Raton, 57-80. https://doi.org/10.1201/9781351071284-5 |