全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于“肠–肝”轴学说探讨肠道菌群在代谢性疾病中的作用
Exploring the Role of Gut Microbiota in Metabolic Diseases Based on the Gut-Liver Axis

DOI: 10.12677/pi.2024.133019, PP. 149-161

Keywords: 肠道菌群,代谢性疾病,代谢产物,“肠–肝”轴
Gut Microbiota
, Metabolic Disease, Metabolite, Gut-Liver Axis

Full-Text   Cite this paper   Add to My Lib

Abstract:

代谢性疾病包括高脂血症、肥胖症、非酒精性脂肪性肝病和动脉粥样硬化等疾病,因高发病率和慢性可持续性已成为人类主要的健康问题。代谢性疾病的发生、发展与胰岛素功能受损、糖脂代谢异常、炎症因子过度表达、肠屏障功能紊乱等显著相关,是由全身代谢失调和多种相互关联的过程共同作用的结果。肠道菌群在上述病理机制中发挥着举足轻重的作用,因此基于“肠–肝”轴学说综述肠道菌群在代谢性疾病中的相关作用,为代谢性疾病的诊断、发病机制和治疗带来开启新的篇章。肠道菌群是肠道微生态系统中密不可分的一部分,参与宿主新陈代谢、维持肠道稳态及免疫调节等诸多生理过程。肝脏和肠道主要通过胆道、门静脉系统紧密联系在一起,两者在免疫、代谢、宿主防御等方面相互联系、相互协作。本文对肠道菌群及其代谢产物与代谢性疾病之间密切且复杂的联系,以及肠道菌群失调对代谢性疾病的影响进行概述,从而探讨肠道菌群与代谢性疾病发生、发展的相关机制。此外,也对肠道菌群通过“肠–肝”轴改善代谢性疾病的最新研究进展进行综述,为代谢性疾病的预防和临床诊疗提供参考。
Metabolic diseases, such as hyperlipidemia, obesity, non-alcoholic fatty liver disease, and atherosclerosis, have emerged as significant health concerns in humans due to their high prevalence and chronic nature. The occurrence and progression of metabolic diseases are attributed to systemic metabolic imbalance and the interplay of various interconnected processes, notably linked to impaired insulin function, abnormal glucose, and lipid metabolism, excessive expression of inflammatory factors, and disruption of intestinal barrier function. The gut microbiota (GM) plays a pivotal role in these pathological mechanisms. Therefore, investigating the relevance of gut microbiota in metabolic diseases based on the “gut-liver” axis theory can offer novel perspectives for comprehending the pathogenesis as well as diagnosing and treating metabolic diseases. GM constitutes an essential component of the intestinal microbial ecosystem that actively participates in regulating host metabolism, maintaining intestinal homeostasis, and modulating immune responses, among other physiological functions. The liver and intestines are closely interconnected through bile ducts and portal vein systems; they interact synergistically with each other concerning immunity regulation, metabolism, and host defense mechanisms. This article provides an overview of the intricate interactions between GM and its metabolites with respect to metabolic diseases while discussing the effect of GM dysbiosis on metabolic diseases. Additionally, this review also encompasses the latest advancements in research on the modulation of metabolic diseases through the “gut-liver” axis by GM, thereby offering valuable insights for clinical diagnosis and management of metabolic disorders.

References

[1]  Wang, L., Zhang, K., Zeng, Y., et al. (2023) Gut Mycobiome and Metabolic Diseases: The Known, the Unknown, and the Future. Pharmacological Research, 193, Article ID: 106807.
https://doi.org/10.1016/j.phrs.2023.106807
[2]  Tripathi, A., Debelius, J., Brenner, D.A., et al. (2018) The Gut-Liver Axis and the Intersection with the Microbiome. Nature Reviews Gastroenterology & Hepatology, 15, 397-411.
https://doi.org/10.1038/s41575-018-0011-z
[3]  杨小雄, 杨帆, 魏小果. 肠-微生物群-肝轴与代谢相关脂肪性肝病的研究进展[J]. 临床荟萃, 2023, 38(6): 559-563.
[4]  Bajinka, O., Tan, Y., Darboe, A., et al. (2023) The Gut Microbiota Pathway Mechanisms of Diabetes. AMB Express, 13, Article No. 16.
https://doi.org/10.1186/s13568-023-01520-3
[5]  Cao, H., Zhu, Y., Hu, G., et al. (2023) Gut Microbiome and Metabolites, the Future Direction of Diagnosis and Treatment of Atherosclerosis? Pharmacological Research, 187, Article ID: 106586.
https://doi.org/10.1016/j.phrs.2022.106586
[6]  Zhang, Q., Zhang, L., Chen, C., et al. (2023) The Gut Microbiota-Artery Axis: A Bridge between Dietary Lipids and Atherosclerosis? Progress in Lipid Research, 89, Article ID: 101209.
https://doi.org/10.1016/j.plipres.2022.101209
[7]  Julian, R.M., David, H.A., Francesca, F., et al. (2016) The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339.
https://doi.org/10.1136/gutjnl-2015-309990
[8]  Isabel, M., Lidia, S., Pablo, P., et al. (2016) Red Wine Polyphenols Modulate Fecal Microbiota and Reduce Markers of the Metabolic Syndrome in Obese Patients. Food & Function, 7, 1775-1787.
https://doi.org/10.1039/C5FO00886G
[9]  Kwok, L.Y., Menghe, B., Shang, Y.N., et al. (2017) Effects of Microencapsulated Lactobacillus Plantarum LIP-1 on the Gut Microbiota of Hyperlipidaemic Rats. British Journal of Nutrition, 118, 481-492.
https://doi.org/10.1017/S0007114517002380
[10]  Britta, B., Janaki, G., Maria, K., et al. (2004) Gnotobiotic Transgenic Mice Reveal That Transmission of Helicobacter Pylori Is Facilitated by Loss of Acid-Producing Parietal Cells in Donors and Recipients. Microbes and Infection, 6, 213-220.
https://doi.org/10.1016/j.micinf.2003.11.008
[11]  Rawls, J.F., Mahowald, M.A., Ley, R.E., et al. (2006) Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-Free Recipients Reveal Host Habitat Selection. Cell, 127, 423-433.
https://doi.org/10.1016/j.cell.2006.08.043
[12]  Kau, A., Planer, J., Rao, S., et al. (2013) Immunoglobulin a Targets Microbes in the Fecal Microbiota of Malawian Twins Discordant for Kwashiorkor. Journal of Allergy and Clinical Immunology, 131, AB330.
https://doi.org/10.1016/j.jaci.2012.12.1556
[13]  Liu, R., Hong, J., Xu, X., et al. (2017) Gut Microbiome and Serum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868.
https://doi.org/10.1038/nm.4358
[14]  Bereswill, S., Larsen, N., Vogensen, F.K., et al. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE, 5, e9085.
https://doi.org/10.1371/journal.pone.0009085
[15]  Allin, K.H., Tremaroli, V., Caesar, R., et al. (2018) Aberrant Intestinal Microbiota in Individuals with Prediabetes. Diabetologia, 61, 810-820.
https://doi.org/10.1007/s00125-018-4550-1
[16]  Ma, Q., Li, Y., Li, P., et al. (2019) Research Progress in the Relationship between Type 2 Diabetes Mellitus and Intestinal Flora. Biomedicine & Pharmacotherapy, 117, Article ID: 109138.
https://doi.org/10.1016/j.biopha.2019.109138
[17]  Koren, O., Spor, A., Felin, J., et al. (2010) Human Oral, Gut, and Plaque Microbiota in Patients with Atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 108, 4592-4598.
https://doi.org/10.1073/pnas.1011383107
[18]  Verhaar, B.J.H., Prodan, A., Nieuwdorp, M., et al. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article 2982.
https://doi.org/10.3390/nu12102982
[19]  Zhu, W., Gregory, J.C., Org, E., et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell, 165, 111-124.
https://doi.org/10.1016/j.cell.2016.02.011
[20]  Wang, Z., Klipfell, E., Bennett, B.J., et al. (2011) Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature, 472, 57-63.
https://doi.org/10.1038/nature09922
[21]  Liu, S., He, F., Zheng, T., et al. (2021) Ligustrum Robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Molecular Nutrition & Food Research, 65, e2100014.
https://doi.org/10.1002/mnfr.202100014
[22]  王诗, 李杰, 刘垠杏, 等. 基于小肠黏膜菌群及肠紧密连接探讨养心通脉方对冠心病血瘀证大鼠的作用机制[J]. 中国中医药信息杂志, 2022, 29(8): 85-92.
[23]  Oriol, J., Sebastian, M., Ruben, F., et al. (2021) Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. International Journal of Environmental Research and Public Health, 18, Article 5227.
https://doi.org/10.3390/ijerph18105227
[24]  Chopyk, D.M. and Grakoui, A. (2020) Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology, 159, 849-863.
https://doi.org/10.1053/j.gastro.2020.04.077
[25]  Zhu, L., Baker, S.S., Gill, C., et al. (2013) Characterization of Gut Microbiomes in Nonalcoholic Steatohepatitis (NASH) Patients: A Connection between Endogenous Alcohol and NASH. Hepatology, 57, 601-609.
https://doi.org/10.1002/hep.26093
[26]  Jiang, S., ShuiI, Y., Cui, Y., et al. (2021) Gut Microbiota Dependent Trimethylamine N-Oxide Aggravates Angiotensin II-Induced Hypertension. Redox Biology, 46, Article ID: 102115.
https://doi.org/10.1016/j.redox.2021.102115
[27]  Ma, J.L. and Li, H.K. (2018) The Role of Gut Microbiota in Atherosclerosis and Hypertension. Frontiers in Pharmacology, 9, Article 1082.
https://doi.org/10.3389/fphar.2018.01082
[28]  Ma, G., Pan, B., Chen, Y., et al. (2017) Trimethylamine N-Oxide in Atherogenesis: Impairing Endothelial Self-Repair Capacity and Enhancing Monocyte Adhesion. Bioscience Reports, 37, BSR20160244.
https://doi.org/10.1042/BSR20160244
[29]  Marina, C., Melania, P., Noemí, R., et al. (2022) TMAO and Gut Microbial-Derived Metabolites TML and γBB Are Not Associated with Thrombotic Risk in Patients with Venous Thromboembolism. Journal of Clinical Medicine, 11, Article 1425.
https://doi.org/10.3390/jcm11051425
[30]  Xiong, R.G., Zhou, D.D., Wu, S.X., et al. (2022) Health Benefits and Side Effects of Short-Chain Fatty Acids. Foods, 11, Article 2863.
https://doi.org/10.3390/foods11182863
[31]  Miyamoto, J., Kasubuchi, M., Nakajima, A., et al. (2016) The Role of Short-Chain Fatty Acid on Blood Pressure Regulation. Current Opinion in Nephrology and Hypertension, 25, 379-383.
https://doi.org/10.1097/MNH.0000000000000246
[32]  Chen, Y., Xu, C., Huang, R., et al. (2018) Butyrate from Pectin Fermentation Inhibits Intestinal Cholesterol Absorption and Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice. The Journal of Nutritional Biochemistry, 56, 175-182.
https://doi.org/10.1016/j.jnutbio.2018.02.011
[33]  Haghikia, A., Zimmermann, F., Schumann, P., et al. (2022) Propionate Attenuates Atherosclerosis by Immune-Dependent Regulation of Intestinal Cholesterol Metabolism. European Heart Journal, 43, 518-533.
https://doi.org/10.1093/eurheartj/ehab644
[34]  Sahuri-Arisoylu, M., Brody, L.P., Parkinson, J.R., et al. (2016) Reprogramming of Hepatic Fat Accumulation and ‘Browning’ of Adipose Tissue by the Short-Chain Fatty Acid Acetate. International Journal of Obesity, 40, 955-963.
https://doi.org/10.1038/ijo.2016.23
[35]  Zhao, Y., Liu, J., Hao, W., et al. (2017) Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. Journal of Agricultural and Food Chemistry, 65, 10984-10992.
https://doi.org/10.1021/acs.jafc.7b04666
[36]  Sah, D.K., Arjunan, A., Park, S.Y. and Jung, Y.D. (2022) Bile Acids and Microbes in Metabolic Disease. World Journal of Gastroenterology, 28, 6846-6866.
https://doi.org/10.3748/wjg.v28.i48.6846
[37]  Guan, B., Tong, J., Hao, H., et al. (2022) Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharmaceutica Sinica B, 12, 2129-2149.
https://doi.org/10.1016/j.apsb.2021.12.011
[38]  Pathak, P., Xie, C., Nichols, R.G., et al. (2018) Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology, 68, 1574-1588.
https://doi.org/10.1002/hep.29857
[39]  Yang, L., Xie, X., Li, Y., et al. (2021) Evaluation of the Cholesterol-Lowering Mechanism of Enterococcus Faecium Strain 132 and Lactobacillus Paracasei Strain 201 in Hypercholesterolemia Rats. Nutrients, 13, Article 1982.
https://doi.org/10.3390/nu13061982
[40]  Zhu, Y., Li, T., Din, A.U., et al. (2019) Beneficial Effects of Enterococcus Faecalis in Hypercholesterolemic Mice on Cholesterol Transportation and Gut Microbiota. Applied Microbiology and Biotechnology, 103, 3181-3191.
https://doi.org/10.1007/s00253-019-09681-7
[41]  Lee, S.M., Ahn, Y.M., Park, S.H., et al. (2023) Reshaping the Gut Microbiome and Bile Acid Composition by Gyejibongnyeong-Hwan Ameliorates Western Diet-Induced Dyslipidemia. Biomedicine & Pharmacotherapy, 163, Article ID: 114826.
https://doi.org/10.1016/j.biopha.2023.114826
[42]  Liu, B.N., Liu, X.T., Liang, Z.H., et al. (2021) Gut Microbiota in Obesity. World Journal of Gastroenterology, 27, 3837-3850.
https://doi.org/10.3748/wjg.v27.i25.3837
[43]  Silbernauer, C.J., Syrina-Baumgartner, D.M., Arnold, M., et al. (2000) Prandial Lactate Infusion Inhibits Spontaneous Feeding in Rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 278, R646-R653.
https://doi.org/10.1152/ajpregu.2000.278.3.R646
[44]  Harsch, I.A. and Konturek, P.C. (2018) The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into “Old” Diseases. Medical Sciences, 6, Article 32.
https://doi.org/10.3390/medsci6020032
[45]  Chu, F., Shi, M., Lang, Y., et al. (2018) Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators of Inflammation, 2018, Article ID: 8168717.
https://doi.org/10.1155/2018/8168717
[46]  Kang, C., Wang, B., Kaliannan, K., et al. (2017) Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. mBio, 8, e00900-17.
https://doi.org/10.1128/mBio.00470-17
[47]  Khan, M.J., Gerasimidis, K., Edwards, C.A., et al. (2016) Role of Gut Microbiota in the Aetiology of Obesity: Proposed Mechanisms and Review of the Literature. Journal of Obesity, 2016, Article ID: 7353642.
https://doi.org/10.1155/2016/7353642
[48]  Kimura, I., Ozawa, K., Inoue, D., et al. (2013) The Gut Microbiota Suppresses Insulin-Mediated Fat Accumulation via the Short-Chain Fatty Acid Receptor GPR43. Nature Communications, 4, Article No. 1829.
https://doi.org/10.1038/ncomms2852
[49]  Lund?sen, T., Andersson, E.M., Snaith, M., et al. (2012) Inhibition of Intestinal Bile Acid Transporter Slc10a2 Improves Triglyceride Metabolism and Normalizes Elevated Plasma Glucose Levels in Mice. PLOS ONE, 7, e37787.
https://doi.org/10.1371/journal.pone.0037787
[50]  Zhang, W.Q., Zhao, T.T., Gui, D.K., et al. (2019) Sodium Butyrate Improves Liver Glycogen Metabolism in Type 2 Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 67, 7694-7705.
https://doi.org/10.1021/acs.jafc.9b02083
[51]  Zhang, Q., Ni, Y.Q., Qian, L.L., et al. (2021) Decreased Abundance of Akkermansiamuciniphila Leads to the Impairment of Insulin Secretion and Glucose Homeostasis in Lean Type 2 Diabetes. Advanced Science, 8, e2100536.
https://doi.org/10.1002/advs.202100536
[52]  Zhang, Y., Gu, Y., Chen, Y., et al. (2021) Dingxin Recipe IV Attenuates Atherosclerosis by Regulating Lipid Metabolism Through LXR-α/SREBP1 Pathway and Modulating the Gut Microbiota in ApoE-/- Mice Fed with HFD. Journal of Ethnopharmacology, 266, Article ID: 113436.
https://doi.org/10.1016/j.jep.2020.113436
[53]  Sheng, Y., Meng, G., Zhou, Z., et al. (2023) PARP-1 Inhibitor Alleviates Liver Lipid Accumulation of Atherosclerosis via Modulating Bile Acid Metabolism and Gut Microbes. Molecular Omics, 19, 560-573.
https://doi.org/10.1039/D3MO00033H
[54]  Du, Y., Li, X., Su, C., et al. (2020) Butyrate Protects against High-Fat Diet-Induced Atherosclerosis via Up-Regulating ABCA1 Expression in Apolipoprotein E-Deficiency Mice. British Journal of Pharmacology, 177, 1754-1772.
https://doi.org/10.1111/bph.14933
[55]  Wu, Q., Sun, L., Hu, X., et al. (2021) Suppressing the Intestinal Farnesoid X Receptor/Sphingomyelin Phosphodiesterase 3 Axis Decreases Atherosclerosis. The Journal of Clinical Investigation, 131, e142865.
https://doi.org/10.1172/JCI142865
[56]  Yu, X., Ding, X., Feng, H., et al. (2023) Excessive Exogenous Cholesterol Activating Intestinal LXRα-ABCA1/G5/G8 Signaling Pathway Can Not Reverse Atherosclerosis in ApoE-/- Mice. Lipids in Health and Disease, 22, Article No. 51.
https://doi.org/10.1186/s12944-023-01810-6
[57]  Ji, Y., Yin, Y., Li, Z., et al. (2019) Gut Microbiota-Derived Components and Metabolites in the Progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nutrients, 11, Article 1712.
https://doi.org/10.3390/nu11081712
[58]  Ye, J., Lv, L., Wu, W., et al. (2018) Butyrate Protects Mice against Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Frontiers in Microbiology, 9, Article 1967.
https://doi.org/10.3389/fmicb.2018.01967
[59]  Luo, Y., Yang, S., Wu, X., et al. (2021) Intestinal MYC Modulates Obesity-Related Metabolic Dysfunction. Nature Metabolism, 3, 923-939.
https://doi.org/10.1038/s42255-021-00421-8
[60]  Yan, T., Luo, Y., Yan, N., et al. (2023) Intestinal Peroxisome Proliferator-Activated Receptor α-Fatty Acid-Binding Protein 1 Axis Modulates Nonalcoholic Steatohepatitis. Hepatology, 77, 239-255.
https://doi.org/10.1002/hep.32538
[61]  Xie, C., Yagai, T., Luo, Y., et al. (2017) Activation of Intestinal Hypoxia-Inducible Factor 2α during Obesity Contributes to Hepatic Steatosis. Nature Medicine, 23, 1298-1308.
https://doi.org/10.1038/nm.4412
[62]  李曼曼, 邱建利. 基于“肠-肝轴”理论探讨胆道闭锁术后从脾论治机制[J]. 现代中西医结合杂志, 2023, 32(21): 3018-3021, 3031.
[63]  周怡驰, 胡世平, 晏军, 等. 基于肠-肝轴与肝病实脾理论探讨脂肪肝的发病与治疗思路[J]. 新中医, 2021, 53(14): 186-189.
[64]  陈美岑. 基于“肝-肠轴”研究柔肝化纤颗粒调控肠道菌群失衡及治疗乙肝肝硬化代偿期的临床研究[D]: [硕士学位论文]. 南宁: 广西中医药大学, 2020.
[65]  钤培国. 肝肠循环的中西医研究进展[J]. 医学综述, 2016, 22(14): 2799-2802.
[66]  Chen, M.L., Yi, L., Zhang, Y., et al. (2016) Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio, 7, e02210-15.
https://doi.org/10.1128/mBio.02210-15
[67]  贺凯. 黄连生物碱调节高脂C57BL/6J小鼠胆汁酸信号通路和肠道微生物改善血脂异常研究[D]: [博士学位论文]. 重庆: 西南大学, 2017.
[68]  Zeng, S.L., Li, S.Z., Xiao, P.T., et al. (2020) Citrus Polymethoxyflavones Attenuate Metabolic Syndrome by Regulating Gut Microbiome and Amino Acid Metabolism. Science Advances, 6, eaax6208.
https://doi.org/10.1126/sciadv.aax6208
[69]  Jia, X.K., Xu, W., Zhang, L., et al. (2021) Impact of Gut Microbiota and Microbiota-Related Metabolites on Hyperlipidemia. Frontiers in Cellular and Infection Microbiology, 11, Article 634780.
https://doi.org/10.3389/fcimb.2021.634780
[70]  Janeiro, M.H., Ramírez, M.J., Milagro, F.I., et al. (2018) Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10, Article 1398.
https://doi.org/10.3390/nu10101398
[71]  Gillard, J., Clerbaux, L.A., Nachit, M., et al. (2022) Bile Acids Contribute to the Development of Non-Alcoholic Steatohepatitis in Mice. JHEP Reports, 4, Article ID: 100387.
https://doi.org/10.1016/j.jhepr.2021.100387
[72]  Liu, M., Shi, W., Huang, Y.F., et al. (2023) Intestinal Flora: A New Target for Traditional Chinese Medicine to Improve Lipid Metabolism Disorders. Frontiers in Pharmacology, 14, Article 1134430.
https://doi.org/10.3389/fphar.2023.1134430

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413