全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

根瘤菌与植物共生的研究进展
Advances in Research on Rhizobium and Plant Symbiosis

DOI: 10.12677/ije.2024.132018, PP. 134-412

Keywords: 植物根系–微生物,根瘤菌共生,信号通路
Plant Roots-Microorganisms
, Rhizobium Symbiosis, Signaling Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物的根系与其微共生体是一对亲密的盟友。许多植物物种会与各种微生物联系并产生相互作用,这种作用通常对双方是有利的。这些互利共生关系的一个共同特征是微生物能够从环境中获取限制植物生长的营养物质,并与植物交换这些营养物质,以获得植物光合作用产生的碳源。目前研究得最多的是豆科植物与固氮根瘤菌之间的共生关系,以及植物与丛枝菌根真菌(AMF)之间的共生关系。通过正向遗传学和反向遗传学方法,目前在植物根系与微生物共生关系方面发现了许多相关基因,这些发现有助于我们进一步对共生关系相关机制的理解。本文以根瘤菌共生为例,简要回顾了这种共生关系的一些研究成果,以期对植物与微生物的共生关系有更深入的理解,并为育种过程中提高共生固氮有效性的研究提供一定的思路。
Plant roots and its microsymbiote are intimate allies. Many plant species are associated with various microorganisms, and usually form mutually beneficial relationships. A common feature of these mutualistic symbiosis relationships is the ability of microorganisms to take nutrients from the environment that limit plant growth and to exchange these nutrients with plants to obtain carbon sources produced by plant photosynthesis. At present, the most studied symbiotic relationships are between legumes and nitrogen-fixing rhizobium, and between plants and arbuscular mycorrhizal fungi (AMF). Through forward genetics and reverse genetics, many genes related to the symbiosis between plant roots and microorganisms have been discovered, and these findings contribute to our further understanding of the related mechanisms of symbiosis. Taking rhizobia symbiosis as an example, this paper briefly reviewed some research results of this symbiosis relationship, in order to have a deeper understanding of the symbiotic relationship between plants and microorganisms, and provide certain ideas for improving symbiotic nitrogen fixation in the breeding process.

References

[1]  Sutton, M.A., Oenema, O., Erisman, J.W., et al. (2011) Too Much of a Good Thing. Nature, 472, 159-161.
https://doi.org/10.1038/472159a
[2]  Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscularmycorrhizal Fungi. Nature, 435, 824-827.
https://doi.org/10.1038/nature03608
[3]  Besserer, A., Puech-Pagès, V., Kiefer, P., et al. (2006) Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLOS Biology, 4, 1239-1247.
https://doi.org/10.1371/journal.pbio.0040226
[4]  Kosuta, S., Hazledine, S., Sun, J.H., et al. (2008) Differential and Chaotic Calcium Signatures in the Symbiosis Signaling Pathway of Legumes. Proceedings of the National Academy of Sciences of the United States of America, 105, 9823-9828.
https://doi.org/10.1073/pnas.0803499105
[5]  Dénarié, J., Debelle, F. and Prome, J.C. (1996) Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis. Annual Review of Biochemistry, 65, 503-535.
https://doi.org/10.1146/annurev.bi.65.070196.002443
[6]  Oldroyd, G.E.D. and Downie, J.A. (2008) Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes. Annual Review of Plant Biology, 59, 519-546.
https://doi.org/10.1146/annurev.arplant.59.032607.092839
[7]  Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91, 11841-11843.
https://doi.org/10.1073/pnas.91.25.11841
[8]  Wang, D., Dong, W., Murray, J., et al. (2022) Innovation and Appropriation in Mycorrhizal and Rhizobial Symbioses. Plant Cell, 34, 1573-1599.
https://doi.org/10.1093/plcell/koac039
[9]  Zhang, X.C., Wu, X.L., Findley, S., et al. (2007) Molecular Evolution of Lysin Motif-Type Receptor-Like Kinases in Plants. Plant Physiology, 144, 623-636.
https://doi.org/10.1104/pp.107.097097
[10]  Gherbi, H., Markmann, K., Svistoonoff, S., et al. (2008) SymRK Defines a Common Genetic Basis for Plant Root Endosymbioses with Arbuscular Mycorrhiza Fungi, Rhizobia, and Frankia bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105, 4928-4932.
https://doi.org/10.1073/pnas.0710618105
[11]  Maillet, F., Poinsot, V., André, O., et al. (2011) Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature, 469, 58-63.
https://doi.org/10.1038/nature09622
[12]  Antolín-Llovera, M., Ried, M.K. and Parniske, M. (2014) Cleavage of the Symbiosis Receptor-Like Kinase Ectodomain Promotes Complex Formation with Nod Factor Receptor 5. Current Biology, 24, 422-427.
https://doi.org/10.1016/j.cub.2013.12.053
[13]  Endre, G., Kereszt, A., Kevei, Z., et al. (2002) A Receptor Kinase Gene Regulating Symbiotic Nodule Development. Nature, 417, 962-966.
https://doi.org/10.1038/nature00842
[14]  Stracke, S., Kistner, C., Yoshida, S., et al. (2002) A Plant Receptor-Like Kinase Required for Both Bacterial and Fungal Symbiosis. Nature, 417, 959-962.
https://doi.org/10.1038/nature00841
[15]  Oldroyd, G.E. (2013) Speak, Friend, and Enter: Signalling Systems That Promote Beneficial Symbiotic Associations in Plants. Nature Reviews Microbiology, 11, 252-263.
https://doi.org/10.1038/nrmicro2990
[16]  Geurts, R., Xiao, T.T. and Reinhold-Hurek, B. (2016) What Does It Take to Evolve a Nitrogen-Fixing Endosymbiosis? Trends in Plant Science, 21, 199-208.
https://doi.org/10.1016/j.tplants.2016.01.012
[17]  Mbengue, M., Camut, S., de Carvalho-Niebel, F., et al. (2010) The Medicago truncatula E3 Ubiquitin Ligase PUB1 Interacts with the LYK3 Symbiotic Receptor and Negatively Regulates Infection and Nodulation. Plant Cell, 22, 3474-3488.
https://doi.org/10.1105/tpc.110.075861
[18]  Vernié, T., Camut, S., Camps, C., et al. (2016) PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. Plant Physiology, 170, 2312-2324.
https://doi.org/10.1104/pp.15.01694
[19]  Hocher, V., Alloisio, N., Auguy, F., et al. (2011) Transcriptomics of Actinorhizal Symbioses Reveals Homologs of the Whole Common Symbiotic Signaling Cascade. Plant Physiology, 156, 700-711.
https://doi.org/10.1104/pp.111.174151
[20]  He, J., Zhang, C., Dai, H., et al. (2019) A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 12, 1561-1576.
https://doi.org/10.1016/j.molp.2019.10.015
[21]  Rübsam, H., Kr?nauer, C., Abel, N.B., et al. (2023) Nanobody-Driven Signaling Reveals the Core Receptor Complex in Root Nodule Symbiosis. Science, 379, 272-277.
https://doi.org/10.1126/science.ade9204
[22]  Charpentier, M. and Oldroyd, G.E. (2013) Nuclear Calcium Signaling in Plants. Plant Physiology, 163, 496-503.
https://doi.org/10.1104/pp.113.220863
[23]  Charpentier, M., Bredemeier, R., Wanner, G., et al. (2008) Lotus japonicus CASTOR and POLLUX Are Ion Channels Essential for Perinuclear Calcium Spiking in Legume Root Endosymbiosis. Plant Cell, 20, 3467-3479.
https://doi.org/10.1105/tpc.108.063255
[24]  Kim, G.B., Son, S.U., Yu, H.J. and Mun, J.-H. (2019) MtGA2ox10 Encoding C20-GA2-Oxidase Regulates Rhizobial Infection and Nodule Development in Medicago truncatula. Scientific Reports, 9, Article No. 5952.
https://doi.org/10.1038/s41598-019-42407-3
[25]  Saito, K., Yoshikawa, M., Yano, K., et al. (2007) Nucleoporin85 Is Required for Calcium Spiking, Fungal and Bacterial Symbioses, and Seed Production in Lotus japonicus. Plant Cell, 19, 610-624.
https://doi.org/10.1105/tpc.106.046938
[26]  Takeda, N., Maekawa, T. and Hayashi, M. (2012) Nuclear-Localized and Deregulated Calcium-and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in Lotus japonicus. Plant Cell, 24, 810-822.
https://doi.org/10.1105/tpc.111.091827
[27]  Hayashi, T., Banba, M., Shimoda, Y., et al. (2010) A Dominant Function of CCaMK in Intracellular Accommodation of Bacterial and Fungal Endosymbionts. Plant Journal, 63, 141-154.
https://doi.org/10.1111/j.1365-313X.2010.04228.x
[28]  Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., et al. (2006) Deregulation of a Ca2 /Calmodulin-Dependent Kinase Leads to Spontaneous Nodule Development. Nature, 441, 1153-1156.
https://doi.org/10.1038/nature04862
[29]  Yano, K., Yoshida, S., Müller, J., et al. (2008) CYCLOPS, a Mediator of Symbiotic Intracellular Accommodation. Proceedings of the National Academy of Sciences of the United States of America, 105, 20540-20545.
https://doi.org/10.1073/pnas.0806858105
[30]  Singh, S., Katzer, K., Lambert, J., et al. (2014) CYCLOPS, a DNA-Binding Transcriptional Activator, Orchestrates Symbiotic Root Nodule Development. Cell Host Microbe, 15, 139-152.
https://doi.org/10.1016/j.chom.2014.01.011
[31]  Sprent, J.I. and James, E.K. (2007). Legume Evolution: Where Do Nodules and Mycorrhizas Fit in? Plant Physiology, 144, 575-581.
https://doi.org/10.1104/pp.107.096156
[32]  Oldroyd, G.E., Murray, J.D., Poole, P.S. and Downie, J.A. (2011) The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics, 45, 119-144.
https://doi.org/10.1146/annurev-genet-110410-132549
[33]  Xiao, T.T., Schilderink, S., Moling, S., et al. (2014) Fate Map of Medicago truncatula Root Nodules. Development, 141, 3517-3528.
https://doi.org/10.1242/dev.110775
[34]  Gage, D.J. (2004) Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing, Rhizobia during Nodulation of Temperate Legumes. Microbiology and Molecular Biology Reviews, 68, 280-300.
https://doi.org/10.1128/MMBR.68.2.280-300.2004
[35]  Breakspear, A., Liu, C., Roy, S., et al. (2014) The Root Hair “Infectome” of Medicago truncatula Uncovers Changes in Cell Cycle Genes and Reveals Are Quirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 26, 4680-4701.
https://doi.org/10.1105/tpc.114.133496
[36]  Liu, C.-W., Breakspear, A., Stacey, N., et al. (2019) A Protein Complex Required for Polar Growth of Rhizobial Infection Threads. Nature Communications, 10, Article No. 2848.
https://doi.org/10.1038/s41467-019-10029-y
[37]  Pumplin, N., Mondo, S.J., Topp, S., et al. (2010) Medicago truncatula Vapyrin Is a Novel Protein Required for Arbuscularmycorrhizal Symbiosis. Plant Journal, 61, 482-494.
https://doi.org/10.1111/j.1365-313X.2009.04072.x
[38]  Murray, J.D., Muni, R.R.D., Torres-Jerez, I., et al. (2011) Vapyrin, a Gene Essential for Intracellular Progression of Arbuscular Mycorrhizal Symbiosis, Is also Essential for Infection by Rhizobia in the Nodule Symbiosis of Medicago truncatula. Plant Journal, 65, 244-252.
https://doi.org/10.1111/j.1365-313X.2010.04415.x
[39]  Liu, J., Rutten, L., Limpens, E., et al. (2019) A Remote Cis-Regulatory Region Is Required for NIN Expression in the Pericycle to Initiate Nodule Primordium Formation in Medicago truncatula. Plant Cell, 31, 68-83.
https://doi.org/10.1105/tpc.18.00478
[40]  Guan, D., Stacey, N., Liu, C.-W., et al. (2013) Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of Medicago truncatula. Plant Physiology, 162, 107-115.
https://doi.org/10.1104/pp.113.215111
[41]  Hadri, A.-E., Spaink, H.P., Bisseling, T. and Brewin, N.J. (1998) Diversity of Root Nodulation and Rhizobial Infection Processes. In: Spaink, H.P., Kondorosi, A. and Hooykaas, P.J.J., Eds., The Rhizobiaceae, Springer, Dordrecht, 347-360.
https://doi.org/10.1007/978-94-011-5060-6_18
[42]  Schauser, L., Roussis, A., Stiller, J. and Stougaard, J. (1999) A Plant Regulator Controlling Development of Symbiotic Root Nodules. Nature, 402, 191-195.
https://doi.org/10.1038/46058
[43]  Liu, C.-W., Breakspear, A., Guan, D., et al. (2019) NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. Plant Physiology, 179, 1704-1722.
https://doi.org/10.1104/pp.18.01572
[44]  Laporte, P., Lepage, A., Fournier, J., et al. (2014) The CCAAT Box-Binding Transcription Factor NF-YA1 Controls Rhizobial Infection. Journal of Experimental Botany, 65, 481-494.
https://doi.org/10.1093/jxb/ert392
[45]  Jin, Y., Chen, Z., Yang, J., et al. (2018) IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. Frontiers in Plant Science, 9, Article 267.
https://doi.org/10.3389/fpls.2018.00267
[46]  Hirsch, S., Kim, J., Mu?oz, A., et al. (2009) GRAS Proteins form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula. Plant Cell, 21, 545-557.
https://doi.org/10.1105/tpc.108.064501
[47]  Middleton, P.H., Jakab, J., Penmetsa, R.V., et al. (2007) An ERF Transcription Factor in Medicago truncatula That Is Essential for Nod Factor Signal Transduction. Plant Cell, 19, 1221-1234.
https://doi.org/10.1105/tpc.106.048264
[48]  Cerri, M.R., Wang, Q.H., Stolz, P., et al. (2017) The ERN1 Transcription Factor Gene Is a Target of the CCaMK/CYCLOPS Complex and Controls Rhizobial Infection in Lotus japonicus. New Phytologist, 215, 323-337.
https://doi.org/10.1111/nph.14547
[49]  Andriankaja, A., Boisson-Dernier, A., Frances, L., et al. (2007) AP2-ERF Transcription Factors Mediate Nod Factor Dependent Mt ENOD11 Activation in Root Hairs via a Novel Cis-Regulatory Motif. Plant Cell, 19, 2866-2885.
https://doi.org/10.1105/tpc.107.052944
[50]  Cerri, M.R., Frances, L., Kelner, A., et al. (2016) The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiology, 171, 1037-1054.
https://doi.org/10.1104/pp.16.00230
[51]  Kawaharada, Y., Nielsen, M.W., Kelly, S., et al. (2017) Differential Regulation of the Epr3 Receptor Coordinates Membrane-Restricted Rhizobial Colonization of Root Nodule Primordia. Nature Communications, 8, Article No. 14534.
https://doi.org/10.1038/ncomms14534
[52]  Vernié, T., Kim, J., Frances, L., et al. (2015) The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root. Plant Cell, 27, 3410-3424.
https://doi.org/10.1105/tpc.15.00461
[53]  Yoro, E., Suzaki, T., Toyokura, K., et al. (2014) A Positive Regulator of Nodule Organogenesis, Nodule Inception, Acts as a Negative Regulator of Rhizobial Infection in Lotus japonicus. Plant Physiology, 165, 747-758.
https://doi.org/10.1104/pp.113.233379
[54]  Combier, J.P., de Billy, F., Gamas, P., Niebel, A. and Rivas, S. (2008) Trans-Regulation of the Expression of the Transcription Factor MtHAP2-1 by a uORF Controls Root Nodule Development. Genes &Development, 22, 1549-1559.
https://doi.org/10.1101/gad.461808
[55]  Soyano, T., Kouchi, H., Hirota, A. and Hayashi, M. (2013) Nodule Inception Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus. PLOS Genetics, 9, e1003352.
https://doi.org/10.1371/journal.pgen.1003352
[56]  Rípodas, C., Castaingts, M., Clúa, J., et al. (2019) The PvNF-YA1 and PvNF-YB7 Subunits of the Heterotrimeric NF-Y Transcription Factor Influence Strain Preference in the Phaseolus vulgaris-Rhizobium etli Symbiosis. Frontiers in Plant Science, 10, Article 221.
https://doi.org/10.3389/fpls.2019.00221
[57]  Battaglia, M., Rípodas, C., Clúa, J., et al. (2014) A Nuclear Factor Y Interacting Protein of the GRAS Family Is Required for Nodule Organogenesis, Infection Thread Progression, and Lateral Root Growth. Plant Physiology, 164, 1430-1442.
https://doi.org/10.1104/pp.113.230896
[58]  Cordoba, E., Shishkova, S., Vance, C.P. and Hernández, G. (2003) Antisense Inhibition of NADH Glutamate Synthase Impairs Carbon/Nitrogen Assimilation in Nodules of Alfalfa (Medicago sativa L.). Plant Journal, 33, 1037-1049.
https://doi.org/10.1046/j.1365-313X.2003.01686.x
[59]  Smith, P.M. and Atkins, C.A. (2002) Purine Biosynthesis: Big in Cell Division, Even Bigger in Nitrogen Assimilation. Plant Physiology, 128, 793-802.
https://doi.org/10.1104/pp.010912
[60]  Coleto, I., Trenas, A.T., Erban, A., et al. (2016) Functional Specialization of One Copy of Glutamine Phosphoribosyl Pyrophosphate Amidotransferase in Ureide Production from Symbiotically Fixed Nitrogen in Phaseolus vulgaris. Plant, Cell & Environment, 39, 1767-1779.
https://doi.org/10.1111/pce.12743
[61]  Valkov, V.T., Rogato, A., Alves, L.M., et al. (2017) The Nitrate Transporter Family Protein LjNPF8.6 Controls the N-Fixing Nodule Activity. Plant Physiology, 175, 1269-1282.
https://doi.org/10.1104/pp.17.01187

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133