全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

菲啶酮和吖啶酮类天然产物合成及生物活性研究进展
Synthesis and Biological Activity Research Progress of Phenanthridinone and Quinolinone Natural Products

DOI: 10.12677/hjmce.2024.122013, PP. 101-117

Keywords: 菲啶酮,吖啶酮,生物碱,合成,生物活性
Phenanthridinone
, Acridone, Alkaloids, Synthesis, Biological Activity

Full-Text   Cite this paper   Add to My Lib

Abstract:

菲啶酮(Phenanthridinone)和吖啶酮(Acridone)是两类重要的生物碱类化合物,广泛存在于许多活性天然产物骨架中。本文综述了近年来菲啶酮和吖啶酮类天然产物在合成和生物活性方面的最新研究进展。首先,重点介绍了菲啶酮和吖啶酮类天然产物的生物活性,包括抗氧化、抗炎、抗肿瘤、抗菌和抗病毒等方面的活性,并对其作用机制进行了阐述。然后,介绍了菲啶酮和吖啶酮类天然产物的化学结构和分类,然后总结了它们的合成方法,包括传统的合成方法、新型的绿色合成方法以及催化下的合成方法。最后,指出了当前研究中存在的问题和未来的发展方向,为相关领域的研究提供了参考。
Phenanthridinone and acridone are two important alkaloids that are widely present in many active natural product frameworks. In this paper, the recent advances in the synthesis and bioactivity of phenanthridone and acridone natural products were reviewed. Firstly, the biological activities of phenridone and acridone natural products, including antioxidant, anti-inflammatory, anti-tumor, antibacterial and antiviral activities, were introduced, and their mechanisms of action were described. Then, the chemical structure and classification of phenanthridone and acridone natural products were introduced, and their synthesis methods were summarized, including traditional synthesis methods, new green synthesis methods and catalytic synthesis methods. Finally, it points out the existing problems in the current research and the future development direction, and provides a reference for the research in related fields.

References

[1]  徐智, 吴德玲, 张伟, 等. 生物碱类化合物的研究进展[J]. 广东化工, 2014, 41(17): 84-85, 108.
[2]  周贤春, 何春霞, 苏力坦?阿巴白克力. 生物碱的研究进展[J]. 生物技术通讯, 2006, 17(3): 476-479.
[3]  ?kubník, J., Pavlí?ková, V.S., Ruml, T. and Rimpelová, S. (2021) Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology, 10, Article 849.
https://doi.org/10.3390/biology10090849
[4]  Shukla, R., Singh, A., and Singh, K.K. (2023) Vincristine-Based Nanoformulations: A Preclinical and Clinical Studies Overview. Drug Delivery and Translational Research, 14, 1-16.
https://doi.org/10.1007/s13346-023-01389-6
[5]  Goel, A. (2023) Current Understanding and Future Prospects on Berberine for Anticancer Therapy. Chemical Biology & Drug Design, 102, 177-200.
https://doi.org/10.1111/cbdd.14231
[6]  黄荣彩, 唐海沁, 蒋品, 等. 复方利血平氨苯蝶啶片治疗原发性高血压的Meta分析[J]. 中国临床保健杂志, 2018, 21(2): 214-217.
[7]  Weir, M.R. (2020) Reserpine: A New Consideration of an Old Drug for Refractory Hypertension. American Journal of Hypertension, 33, 708-710.
https://doi.org/10.1093/ajh/hpaa069
[8]  Beteck, R.M., Smit, F.J., Haynes, R.K. and N’Da, D.D. (2014) Recent Progress in the Development of Anti-Malarial Quinolones. Malaria Journal, 13, Article No. 339.
https://doi.org/10.1186/1475-2875-13-339
[9]  Dennis, G.S. (2016) Historical Review: Problematic Malaria Prophylaxis with Quinine. The American Journal of Tropical Medicine and Hygiene, 95, 269-272.
https://doi.org/10.4269/ajtmh.16-0138
[10]  张加洋. 石松生物碱Lyconadins A-E和羽扇豆生物碱Hosieines A-D的全合成研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2021.
[11]  郭华, 兰玮妃, 黄丹蓉, 等. 新型生物碱提取分离研究进展[J]. 中央民族大学学报(自然科学版), 2021, 30(1): 74-81.
[12]  张德华, 李茹, 王永梅, 等. 生物碱的分类和鉴定方法研究进展[J]. 皖西学院学报, 2010, 26(5): 69-73.
[13]  杜硕. Epidithiodiketopiperazines类生物碱Epicoccin G与石蒜科生物碱( )-γ-Lycorane的全合成研究[D]: [硕士学位论文]. 上海: 华东师范大学, 2018.
[14]  Zhong, J. (2005) Amaryllidaceae and Sceletium Alkaloids. Natural Product Reports, 22, 111-126.
https://doi.org/10.1039/b316106b
[15]  Monzoni, A., Masutti, F., Saccoccio, G., et al. (2001) Genetic Determinants of Ethanol-Induced Liver Damage. Molecular Medicine, 7, 255-262.
https://doi.org/10.1007/BF03401845
[16]  Ruchelman, A.L., Houghton, P.J., Zhou, N., et al. (2005) 5-(2-Aminoethyl) dibenzo [c,h][1,6]naphthyridin-6-ones: Variation of N-Alkyl Substituents Modulates Sensitivity to Efflux Transporters Associated with Multidrug Resistance. Journal of Medicinal Chemistry, 48, 792-804.
https://doi.org/10.1021/jm049447z
[17]  张丽慧, 田秋月, 夏俊丽, 等. 吖啶酮类化合物的研究概况[J]. 辽宁化工, 2017, 46(2): 180-181.
[18]  Nguyen, Q.C., Nguyen, T.T., Yougnia, R., Gaslonde, T., Dufat, H., Michel, S. and Tillequin, F. (2009) Acronycine Derivatives: A Promising Series of Anti-Cancer Agents. Anti-Cancer agents in Medicinal Chemistry, 9, 804-815.
https://doi.org/10.2174/187152009789056921
[19]  Banerjee, J., Kundu, I., Zhang, S., et al. (2019) Synthesis and Preliminary Biophysical and Cellular Evaluation of Some Ring-Enlarged Analogues of the Anti-Tumor Plant Alkaloid Acronycine. ACS Omega, 4, 6106-6113.
https://doi.org/10.1021/acsomega.8b03673
[20]  Wu, Y.C., Yen, W.Y., Ho, H.Y., Su, T.L. and Yih, L.H. (2010) Glyfoline Induces Mitotic Catastrophe and Apoptosis in Cancer Cells. International Journal of Cancer, 126, 1017-1028.
https://doi.org/10.1002/ijc.24841
[21]  Lee, Y., Chiou, J., Wang, L., Chen, Y. and Chang, L. (2023) Amsacrine Downregulates BCL2L1 Expression and Triggers Apoptosis in Human Chronic Myeloid Leukemia Cells through the SIDT2/NOX4/ERK/HuR Pathway. Toxicology and Applied Pharmacology, 474, Article 116625.
https://doi.org/10.1016/j.taap.2023.116625
[22]  Assali M., Zaid, A.N., Abdallah, F., et al. (2017) Single-Walled Carbon Nanotubes-Ciprofloxacin Nanoantibiotic: Strategy to Improve Ciprofloxacin Antibacterial Activity. International Journal of Nanomedicine, 12, 6647-6659.
https://doi.org/10.2147/IJN.S140625
[23]  Pettit, G.R., Meng, Y., Herald, D.L., Knight, J.C. and Day, J.F. (2005) Antineoplastic Agents. 553. The Texas Grasshopper Brachystola magna. Journal of Natural Products, 68, 1256-1258.
https://doi.org/10.1021/np0402367
[24]  Pettit, G.R., Eastham, S.A., Melody, N., et al. (2006) Isolation and Structural Modification of 7-Deoxynarciclasine and 7-Deoxy-trans-Dihydronarciclasine. Journal of Natural Products, 69, 7-13.
https://doi.org/10.1021/np058068l
[25]  Lee, S., Hwang, S., Yu, S., Jang, W., Lee, Y.M. and Kim, S. (2011) Synthesis and Evaluation of C-Ring Aromatized Analogues of Phenanthridone Alkaloids. Archives of Pharmacal Research, 34, 1065-1070.
https://doi.org/10.1007/s12272-011-0703-1
[26]  Zhang, S., Zhang, S., Wang, Y., Zhang, Y., Liang, S., Fan, S., Chen, D. and Liu, G. (2023) Discovery of Novel Phenanthridone Derivatives with Anti-Streptococcal Activity. Archives of Microbiology, 205, Article No. 371.
https://doi.org/10.1007/s00203-023-03705-7
[27]  Wahlberg, E., Karlberg, T., Kouznetsova, E., Markova, N., Macchiarulo, A., Thorsell, A.G., Pol, E., Frostell, ?., Ekblad, T., ?ncü, D., Kull, B., Robertson, G.M., Pellicciari, R., Schüler, H. and Weigelt, J. (2012) Family-Wide Chemical Profiling and Structural Analysis of PARP and Tankyrase Inhibitors. Nature Biotechnology, 30, 283-288.
https://doi.org/10.1038/nbt.2121
[28]  Bondar, D., Bragina, O., Lee, J.Y., Semenyuta, I., J?rving, I., Brovarets, V., Wipf, P., Bahar, I. and Karpichev, Y.A. (2023) Hydroxamic Acids as PARP-1 Inhibitors: Molecular Design and Anticancer Activity of Novel Phenanthridinones. Helvetica Chimica Acta, 106, e202300133.
https://doi.org/10.1002/hlca.202300133
[29]  Nair, J.J. and Staden, V.J. (2018) Phenanthridone Alkaloids of the Amaryllidaceae as Activators of the Apoptosis-Related Proteolytic Enzymes, Caspases. Natural Product Communications, 13, 1375-1380.
https://doi.org/10.1177/1934578X1801301035
[30]  Alexander, K. and Antonio, E. (2008) Chemistry, Biology, and Medicinal Potential of Narciclasine and Its Congeners. Chemical Reviews, 108, 1982-2014.
https://doi.org/10.1021/cr078198u
[31]  Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R.F. and Buolamwini, J.K. (2007) Synthesis and Biological Evaluation of Novel 5(H)-Phenanthridin-6-Ones, 5(H)-Phenanthridin-6-One Diketo Acid, and Polycyclic Aromatic Diketo Acid Analogs as New HIV-1 Integrase Inhibitors. Bioorganic & Medicinal Chemistry, 15, 1212-1228.
https://doi.org/10.1016/j.bmc.2006.11.026
[32]  Nakamura, M., Aoyama, A., Salim, T.M., et al. (2010) Structural Development Studies of Anti-Hepatitis C Virus Agents with a Phenanthridinone Skeleton. Bioorganic Medicinal Chemistry, 18, 2402-2411.
https://doi.org/10.1016/j.bmc.2010.02.057
[33]  Akpan, E.D., Dagdag, O. and Ebenso, E.E. (2022) Recent Progress on the Anticorrosion Activities of Acridine and Acridone Derivatives: A Review. Journal of Molecular Liquids, 361, Article 119686.
https://doi.org/10.1016/j.molliq.2022.119686
[34]  Alday, P.H., McConnell, E.V., Boitz Zarella, J.M., et al. (2021) Acridones Are Highly Potent Inhibitors of Toxoplasma gondii Tachyzoites. ACS Infectious Diseases, 7, 1877-1884.
https://doi.org/10.1021/acsinfecdis.1c00016
[35]  Yadav, T.T., Murahari, M., Peters, G.J. and Mayur, Y.C. (2022) A Comprehensive Review on Acridone Based Derivatives as Future Anti-Cancer Agents and Their Structure Activity Relationships. European Journal of Medicinal Chemistry, 239, Article 114527.
https://doi.org/10.1016/j.ejmech.2022.114527
[36]  Philippe, B., Johann, B., Thomas, G., et al. (2007) Acridine and Acridone Derivatives, Anticancer Properties and Synthetic Methods: Where Are We Now? Anti-Cancer Agents in Medicinal Chemistry, 7, 139-169.
https://doi.org/10.2174/187152007780058669
[37]  Bayet, C., Fazio, C., Darbour, N., et al. (2007) Modulation of P-Glycoprotein Activity by Acridones and Coumarins from Citrus sinensis. Phytotherapy Research, 21, 386-390.
https://doi.org/10.1002/ptr.2081
[38]  Joshi, P., Vishwakarma, A.R. and Bharate, B.S. (2017) Natural Alkaloids as P-gp Inhibitors for Multidrug Resistance Reversal in Cancer. European Journal of Medicinal Chemistry, 138, 273-292.
https://doi.org/10.1016/j.ejmech.2017.06.047
[39]  Aonnicha, S., Yutthapong, T., Thurdpong, S., et al. (2018) New Limonophyllines A-C from the Stem of Atalantia monophylla and Cytotoxicity against Cholangiocarcinoma and HepG2 Cell Lines. Archives of Pharmacal Research, 41, 431-437.
https://doi.org/10.1007/s12272-018-1021-7
[40]  Thi, T.M.N., Hoang, P.D., Xuan, H.N., et al. (2020) Paratrimerin I, Cytotoxic Acridone Alkaloid from the Roots of Paramignya trimera. Natural Product Research, 35, 5042-5047.
https://doi.org/10.1080/14786419.2020.1774760
[41]  Woodroofe, C.C., Zhong, B., Lu, X. and Silverman, R.B. (2000) Anomalous Schmidt Reaction Products of Phenylacetic Acid and Derivatives. Journal of the Chemical Society-Perkin Transactions, 2, 55-59.
https://doi.org/10.1039/a907337j
[42]  Banwell, M.G., Lupton, D.W., Ma, X., et al. (2004) Synthesis of Quinolines, 2-Quinolones, Phenanthridines, and 6(5H)-Phenanthridinones via Palladium [0]-Mediated Ullmann Cross-Coupling of 1-Bromo-2-Nitroarenes with Beta-Halo-enals,-enones, or-esters. Organic Letters, 16, 2741-2744.
https://doi.org/10.1021/ol0490375
[43]  Guy, A., Guette, J.P. and Lang, G. (1980) Utilization of Polyphosphoric Acid in the Presence of a Co-solvent. Synthesis, 1980, 222-223.
https://doi.org/10.1055/s-1980-28974
[44]  Guo, X., Xing, Q., Lei, K., et al. (2017) A Tandem Ring Opening/Closure Reaction in A BF3-Mediated Rearrangement of Spirooxindoles. Advanced Synthesis Catalysis, 359, 4393-4398.
https://doi.org/10.1002/adsc.201700728
[45]  Corsaro, A., Librando, V., Chiacchio, U., Pistarà, V. and Rescifina, A. (1998) Cycloaddition of Nitrile Oxides to aza-Analogues of Phenanthrene. Tetrahedron, 54, 9187-9194.
https://doi.org/10.1016/S0040-4020(98)00556-0
[46]  Gilman, H. and Eisch, J.J. (1957) The Chemistry and Synthetic Applications of the Phenanthridinone System. Journal of the American Chemical Society, 79, 5479-5483.
https://doi.org/10.1021/ja01577a041
[47]  Sanz, R., et al. (2007) Functionalized Phenanthridine and Dibenzopyranone Derivatives through Benzyne Cyclization—Application to the Total Syntheses of Trisphaeridine and N-Methylcrinasiadine. European Journal of Organic Chemistry, 2007, 62-69.
https://doi.org/10.1002/ejoc.200600621
[48]  Haridharan, R., et al. (2015) Rhodium (III)-Catalyzed ortho-Arylation of Anilides with Aryl Halides. Advanced Synthesis & Catalysis, 357, 366-370.
https://doi.org/10.1002/adsc.201400798
[49]  Dao, P.D., Lim, H. and Cho, C.S. (2018) Weak Base-Promoted Lactamization under Microwave Irradiation: Synthesis of Quinolin-2(1H)-ones and Phenanthridin-6(5H)-ones. ACS Omega, 3, 12114-12121.
https://doi.org/10.1021/acsomega.8b01742
[50]  Conde, N., Churruca, F., San Martin, R., et al. (2015) A Further Decrease in the Catalyst Loading for the Palladium-Catalyzed Direct Intramolecular Arylation of Amides and Sulfonamides. Advanced Synthesis Catalysis, 357, 1525-1531.
https://doi.org/10.1002/adsc.201401129
[51]  Manikandan, T.S., Ramesh, R. and Sémeril, D. (2019) The Tandem C-H/N-H Activation of N-Methyl Arylamide Catalyzed by Dinuclear Pd (II) Benzhydrazone Complex: A Concise Access to Phenanthridinone. Organometallics, 38, 319-328.
https://doi.org/10.1021/acs.organomet.8b00714
[52]  Ding, X., Zhang, L., Mao, Y., Rong, B., Zhu, N., Duan, J. and Guo, K. (2019) Synthesis of Phenanthridinones by Palladium-Catalyzed Cyclization of N-Aryl-2-Aminopyridines with 2-Iodobenzoic Acids in Water. Synlett, 31, 28-284.
https://doi.org/10.1055/s-0039-1691538
[53]  Minghao, F., Bingqing, T., Nengzhong, W., et al. (2015) Ligand Controlled Regiodivergent C1 Insertion on Arynes for Construction of Phenanthridinone and Acridone Alkaloids. Angewandte Chemie, 54, 14960-14964.
https://doi.org/10.1002/anie.201508340
[54]  Wen, J., Tang, S., Zhang, F., Shi, R. and Lei, A. (2017) Palladium/Copper Co-Catalyzed Oxidative C-H/C-H Carbonylation of Diphenylamines: A Way to Access Acridones. Organic Letters, 19, 94-97.
https://doi.org/10.1021/acs.orglett.6b03356
[55]  Kancharla, P., Dodean, R.A., Li, Y. and Kelly, J.X. (2019) Boron Trifluoride Etherate Promoted Microwave-Assisted Synthesis of Antimalarial Acridones. RSC Advances, 9, 42284-42293.
https://doi.org/10.1039/C9RA09478D
[56]  Tirtha, M., Shilpi, K., Ajoy, K., et al. (2021) Studies Directed towards the Synthesis of the Acridone Family of Natural Products: Total Synthesis of Acronycines and Atalaphyllidines. ACS Omega, 6, 27062-27069.
https://doi.org/10.1021/acsomega.1c03629
[57]  Zhao, J. and Larock, R.C. (2007) Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates. The Journal of Organic Chemistry, 72, 583-588.
https://doi.org/10.1021/jo0620718
[58]  Fang, Y., Rogness, D.C., Larock, R.C. and Shi, F. (2012) Formation of Acridones by Ethylene Extrusion in the Reaction of Arynes with β-Lactams and Dihydroquinolinones. The Journal of Organic Chemistry, 77, 6262-6270.
https://doi.org/10.1021/jo3011073
[59]  Liu, F., Si, M., Shi, X., Zhuang, S., Cai, Q., Liu, Y. and Wu, A. (2023) Base-Controlled Synthesis of Fluorescent Acridone Derivatives via Formal (4 2) Cycloaddition. The Journal of Organic Chemistry, 88, 3173-3184.
https://doi.org/10.1021/acs.joc.2c02977

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413