全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

槟榔–草果–厚朴治疗上呼吸道感染作用机制的网络药理学研究
Study on the Mechanism of Betel Nut-Tsaoko-Magnolia Officinalis in the Treatment of Upper Respiratory Tract Infection by Network Pharmacology

DOI: 10.12677/hjmce.2024.122014, PP. 118-131

Keywords: 槟榔–草果–厚朴,上呼吸道感染,网络药理学,分子对接
Areca Catechu-Tsaoko-Magnolia Officinalis
, Upper Respiratory Tract Infection, Network Pharmacology, Molecular Docking

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:通过网络药理学探究槟榔–草果–厚朴治疗上呼吸道感染的潜在作用机制。方法:从TCMSP、BATMAN-TCM和Swiss Target Prediction数据库中搜集活性成分和作用靶点,从Gene Cards数据库中搜集上呼吸道感染相关靶点。通过Venny2.1.0平台得到两者的共同靶点,并通过STRING11.0数据库和Cytoscape3.7.1构建PPI。用Cytoscape3.7.1筛选主要活性成分和核心靶点,再用Metascape数据库和CB-Dock数据库完成富集分析和分子对接,最后用微生信进行可视化处理。结果:共得到16个活性成分和190个共同靶点,根据Degree值,Quercetin、Procyanidin B1、Daucosterol_qt、Eucalyptol、Neohesperidin等10个为主要活性成分和TNF、MMP-9、STAT3、AKT1、TGFB1、PTGS2等10个为核心靶点;富集分析提示药物可能通过影响多生物过程、细胞组分及分子功能,及PI3K-AKT信号通路、松弛素信号通路、NF-κB信号通路、cAMP信号通路、FoxO信号通路等发挥作用;分子对接显示主要活性成分与核心靶点具有结合性,且大部分结合性强烈。结论:槟榔–草果–厚朴治疗上呼吸道感染的潜在作用机制涉及抗病毒、抗炎和增强免疫力三方面。
Objective: To explore the potential mechanism of Areca catechu-Amomumtsaoko-Magnolia officinalis in the treatment of upper respiratory tract infection through network pharmacology. Methods: The active components and targets of drugs were collected from TCMSP, BATMAN-TCM and SwissTargetPrediction databases, and the targets related to upper respiratory tract infection were collected from GeneCards database. Through Venny2.1.0 platform, the common targets of the two are obtained, and PPI is constructed through STRING11.0 database and Cytoscape 3.7.1. The main active components and core targets were screened by Cytoscape 3.7.1, and then the enrichment analysis and molecular docking were completed by Metascape database and CB-Dock database, and finally the visualization was carried out by micro-signal. Results: A total of 16 active components and 190 common targets were obtained. According to the Degree value, 10 active components such as Quercetin, Procyanidin B1, Daucosterol_qt, Eucalyptol and Neohesperidin were the main active components and 10 core targets such as TNF, MMP-9, STAT3, AKT1, TGFB1 and PTGS2. Enrichment analysis suggests that drugs may play a role by affecting multi-biological processes, cell components and molecular functions, PI3K-AKT signaling pathway, relaxin signaling pathway, NF-κB signaling pathway, cAMP signaling pathway and FoxO signaling pathway. Molecular docking shows that the main active components are bound to the core targets, and most of them are strongly bound. Conclusion: The potential mechanism of Areca catechu-Amomumtsaoko-Magnolia officinalis in treating upper respiratory tract infection involves antivirus, anti-inflammation and enhancing immunity.

References

[1]  郭媛媛, 王飘, 李江, 等. 中药对上呼吸道感染的治疗作用及机制研究进展[J]. 中国医药导刊, 2023, 25(5): 466-470.
[2]  杜正彩, 郝二伟, 韦棪婷, 等. 中国-东盟传统药用植物抗呼吸道常见病毒研究进展[J]. 中成药, 2022, 44(11): 3579-3587.
[3]  李瑞, 孙国同, 黄贝, 等. 达原饮抗病毒性肺炎研究进展[J]. 中药药理与临床, 2023, 39(6): 117-121.
[4]  刘小燕. 达原饮加减治疗小儿上呼吸道感染80例[J]. 陕西中医, 2013, 34(3): 278-279.
[5]  林霜霜, 杨雨蒙, 王建敏. 达原饮治疗儿科疾病验案举隅[J]. 中医儿科杂志, 2020, 16(4): 80-82.
https://doi.org/10.16840/j.issn1673-4297.2020.04.21
[6]  Jinlong, R., Peng, L., Jinan, W., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[7]  Tian, S., Li, Y., Wang, J., et al. (2011) ADME Evaluation in Drug Discovery. 9. Prediction of Oral Bioavailability in Humans Based on Molecular Properties and Structural Fingerprints. Molecular Pharmaceutics, 8, 841-851.
https://doi.org/10.1021/mp100444g
[8]  Kong, X., Liu, C., Zhang, Z., et al. (2023) BATMAN-TCM 2.0: An Enhanced Integrative Database for Known and Predicted Interactions between Traditional Chinese Medicine Ingredients and Target Proteins. Nucleic Acids Research, 52, D1110-D1120.
https://doi.org/10.1093/nar/gkad926
[9]  Gfeller, D., Michielin, O. and Zoete, V. (2013) Shaping the Interaction Landscape of Bioactive Molecules. Bioinformatics, 29, 3073-3079.
https://doi.org/10.1093/bioinformatics/btt540
[10]  Fishilevich, S., Nudel, R., Rappaport, N., et al. (2017) GeneHancer: Genome-Wide Integration of Enhancers and Target Genes in GeneCards. Database: The Journal of Biological Databases and Curation, 2017, Article bax028.
https://doi.org/10.1093/database/bax028
[11]  Szklarczyk, D., Kirsch, R., Koutrouli, M., et al. (2023) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646.
https://doi.org/10.1093/nar/gkac1000
[12]  Szklarczyk, D., Gable, A.L., Lyon, D., et al. (2019) STRING v11: Protein-Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Research, 47, D607-D613.
https://doi.org/10.1093/nar/gky1131
[13]  Zhou, Y., Zhou, B., Pache, L., et al. (2019) Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nature Communications, 10, Article No. 1523.
https://doi.org/10.1038/s41467-019-09234-6
[14]  Berman, H.M., Westbrook, J., Feng, Z., et al. (2000) The Protein Data Bank. Nucleic Acids Research, 28, 235-242.
https://doi.org/10.1093/nar/28.1.235
[15]  Kim, S., Chen, J., Cheng, T., et al. (2023) PubChem 2023 Update. Nucleic Acids Research, 51, D1373-D1380.
https://doi.org/10.1093/nar/gkac956
[16]  Liu, Y., Grimm, M., Dai, W.T., et al. (2020) CB-Dock: A Web Server for Cavity Detection-Guided Protein-Ligand Blind Docking. Acta Pharmacologica Sinica, 41, 138-144.
https://doi.org/10.1038/s41401-019-0228-6
[17]  Tang, D., Chen, M., Huang, X., et al. (2023) SRplot: A Free Online Platform for Data Visualization and Graphing. PLOS ONE, 18, e294236.
https://doi.org/10.1371/journal.pone.0294236
[18]  Hsin, K.Y., Ghosh, S. and Kitano, H. (2013) Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLOS ONE, 8, e83922.
https://doi.org/10.1371/journal.pone.0083922
[19]  白婧. 急性上呼吸道感染咽部微生态菌群分析[J]. 科技视界, 2018(34): 85-86.
https://doi.org/10.19694/j.cnki.issn2095-2457.2018.34.034
[20]  王华, 孟盼, 陈鸣凤, 等. 双黄花片对急性上呼吸道感染患者炎症因子及免疫功能的影响[J]. 湖南中医药大学学报, 2018, 38(5): 570-573.
[21]  Yu, Y., Zhang, Y., Wang, S., et al. (2019) Inhibition Effects of Patchouli Alcohol against Influenza a Virus through Targeting Cellular PI3K/Akt and ERK/MAPK Signaling Pathways. Virology Journal, 16, Article No. 163.
https://doi.org/10.1186/s12985-019-1266-x
[22]  史俊薇, 朱城璧, 孙亚磊, 等. 槲皮素抗呼吸道病毒机制研究进展[J]. 中医儿科杂志, 2023, 19(2): 96-100.
https://doi.org/10.16840/j.issn1673-4297.2023.02.25
[23]  史志恒, 曾嘉琳, 黄欣如, 等. 槲皮素及其衍生物抗病毒活性研究进展[J]. 中国现代应用药学, 2022, 39(18): 2412-2420.
https://doi.org/10.13748/j.cnki.issn1007-7693.2022.18.019
[24]  Li, Y., Yao, J., Han, C., et al. (2016) Quercetin, Inflammation and Immunity. Nutrients, 8, Article 167.
https://doi.org/10.3390/nu8030167
[25]  魏晨浩, 张秀英, 王雪峰, 等. 基于网络药理学及实验验证探讨定喘颗粒干预呼吸道合胞病毒肺炎机制研究[J]. 世界科学技术-中医药现代化, 2023, 25(9): 2996-3010.
[26]  Wan, Y., Xu, L., Liu, Z., et al. (2019) Utilising Network Pharmacology to Explore the Underlying Mechanism of Wumei Pill in Treating Pancreatic Neoplasms. BMC Complementary and Alternative Medicine, 19, Article No. 158.
https://doi.org/10.1186/s12906-019-2580-y
[27]  卫拂晓, 刘欢乐, 范毓慧, 等. 基于网络药理学探讨逍遥散“异病同治”抑郁症、乳腺增生和功能性消化不良的作用机制[J]. 中国中药杂志, 2021, 46(16): 4230-4237.
https://doi.org/10.19540/j.cnki.cjcmm.20210520.702
[28]  江颖娟, 蒋作锋, 吴小兰, 等. 槲皮素对TNF-α诱导内皮细胞炎症因子表达的影响[J]. 新医学, 2017, 48(10): 697-700.
https://doi.org/10.3969/j.issn.0253-9802.2017.10.005
[29]  张宸豪, 李瑶, 李正祎, 等. 原花青素B1对LPS诱导小鼠巨噬细胞RAW264.7损伤的保护作用及其机制[J]. 吉林大学学报(医学版), 2019, 45(6): 1243-1247.
https://doi.org/10.13481/j.1671-587x.20190609
[30]  李玉玲, 张彧, 邢静, 等. 原花青素B1对脂多糖介导的炎症反应的抑制作用及其机制探讨[J]. 中华危重症医学杂志(电子版), 2015, 8(5): 273-278.
[31]  王翔鹏, 武璐璐, 李丽丽, 等. 胡萝卜苷对刀豆蛋白A诱导的急性肝损伤的保护作用[J]. 中国现代应用药学, 2020, 37(19): 2305-2310.
https://doi.org/10.13748/j.cnki.issn1007-7693.2020.19.001
[32]  芮艳. 桉油醇通过下调M2巨噬细胞极化抑制肺纤维化的作用机制研究[D]: [博士学位论文]. 济南: 山东大学, 2023.
https://doi.org/10.27272/d.cnki.gshdu.2023.000774
[33]  张丽佳, 薛银, 张岑容, 等. 桉油精的抗菌抗炎作用研究[J]. 中国兽药杂志, 2013, 47(3): 21-24.
[34]  Silva, J., Abebe, W., Sousa, S.M., et al. (2003) Analgesic and Anti-Inflammatory Effects of Essential Oils of Eucalyptus. Journal of Ethnopharmacology, 89, 277-283.
https://doi.org/10.1016/j.jep.2003.09.007
[35]  邱晓雨, 金浩鑫, 吴东, 等. 基于网络药理学研究复方精油治疗颈肩痛的关键活性成分及透皮吸收性能[J]. 药品评价, 2023, 20(5): 544-550.
https://doi.org/10.19939/j.cnki.1672-2809.2023.05.06
[36]  Kennedy-Feitosa, E., Cattani-Cavalieri, I., Barroso, M.V., et al. (2019) Eucalyptol Promotes Lung Repair in Mice Following Cigarette Smoke-Induced Emphysema. Phytomedicine, 55, 70-79.
https://doi.org/10.1016/j.phymed.2018.08.012
[37]  林雅慧. 芳樟油气相抗菌机制的研究[D]: [硕士学位论文]. 广州: 广东工业大学, 2012.
[38]  李文扬, 于娜, 孙宜田, 等. 桉柠蒎对慢性阻塞性肺疾病大鼠肺功能和气道细菌负荷的影响[J]. 贵阳医学院学报, 2015, 40(6): 576-580.
https://doi.org/10.19367/j.cnki.1000-2707.2015.06.007
[39]  杨萍, 黄清杰, 李喜香, 等. 橙皮苷药理作用及机制的研究进展[J]. 中草药, 2023, 54(21): 7222-7231.
[40]  刘荣雕, 阮灵伟. PI3K-Akt信号通路与病毒感染[J]. 生物技术通报, 2013(6): 53-62.
https://doi.org/10.13560/j.cnki.biotech.bull.1985.2013.06.023
[41]  王静, 崔霞. 基于网络药理学探讨黄芪治疗反复呼吸道感染的作用机制[J]. 中医药导报, 2020, 26(12): 109-115.
https://doi.org/10.13862/j.cnki.cn43-1446/r.2020.12.030
[42]  廖陈, 夏霜莉, 李秀芳, 等. 基于网络药理学探讨银翘散治疗上呼吸道感染的作用机制[J]. 云南中医学院学报, 2019, 42(5): 55-61.
https://doi.org/10.19288/j.cnki.issn.1000-2723.2019.05.012
[43]  何海, 张小荣, 赵沙沙, 等. 基于数据挖掘及网络药理学方法探讨中药复方抗上呼吸道感染的用药规律及作用机制[J]. 安徽农业科学, 2022, 50(3): 178-185.
[44]  Thomas, K.W., Monick, M.M., Staber, J.M., et al. (2002) Respiratory Syncytial Virus Inhibits Apoptosis and Induces NF-Kappa B Activity through a Phosphatidylinositol 3-Kinase-Dependent Pathway. Journal of Biological Chemistry, 277, 492-501.
https://doi.org/10.1074/jbc.M108107200
[45]  Mookerjee, I., Solly, N.R., Royce, S.G., et al. (2006) Endogenous Relax in Regulates Collagen Deposition in an Animal Model of Allergic Airway Disease. Endocrinology, 147, 754-761.
https://doi.org/10.1210/en.2005-1006
[46]  徐琳, 袁益静, 刘嘉尹. 喉咽清颗粒对慢性咽炎患者血清炎症反应因子及呼吸道黏膜免疫功能的影响[J]. 慢性病学杂志, 2022, 23(7): 1010-1014.
https://doi.org/10.16440/J.CNKI.1674-8166.2022.07.15
[47]  Suzuki, R., Kamio, N., Sugimoto, K., et al. (2022) Periodontopathic Bacterium Fusobacterium nucleatum Affects Matrix Metalloproteinase-9 Expression in Human Alveolar Epithelial Cells and Mouse Lung. In Vivo, 36, 649-656.
https://doi.org/10.21873/invivo.12749
[48]  张华. 呼吸道炎症反应病因学机制的研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2005.
[49]  Yu, H., Lin, L., Zhang, Z., et al. (2020) Targeting NF-KappaB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, Article No. 209.
https://doi.org/10.1038/s41392-020-00312-6
[50]  李忠原, 李保宏, 刘苗苗, 等. 甘草对5种病毒的抑制作用及抗RSV活性部位的筛选[J]. 中成药, 2022, 44(8): 2503-2509.
[51]  张辛宁, 陈文璐, 屠国丽, 等. 基于网络药理学和分子对接技术探讨儿童回春颗粒治疗呼吸道病毒感染疾病的作用机制[J]. 中草药, 2020, 51(19): 5010-5018.
[52]  赖鹏华, 林培政, 王晓萍, 等. 蒿芩清胆汤及其拆方对湿热型流感病毒性肺炎及NF-κB水平的作用研究[J]. 中华中医药杂志, 2011, 26(9): 2074-2076.
[53]  霍桂桃, 霍艳颖, 李佳, 等. 中药通过CAMP-磷酸二酯酶介导的信号调节炎症(英文)[J]. 生物化学与生物物理进展, 2020, 47(8): 659-674.
https://doi.org/10.16476/j.pibb.2020.0133
[54]  曾量波, 钟智成, 刘桂红, 等. 塞来昔布联合莫西沙星对肺炎克雷伯杆菌肺炎大鼠肺部炎症标志物及组织病理学的影响[J]. 广东医学, 2023, 44(1): 1-8.
https://doi.org/10.13820/j.cnki.gdyx.20223421
[55]  李祖金, 樊静, 陈孟溪, 等. 清热散瘀解毒方对EP性发热大鼠血清、下丘脑组织中cAMP含量的影响[J]. 世界中医药, 2016, 11(2): 305-307.
[56]  刘继强, 何素云, 肖勋立, 等. 葎草抗炎镇痛有效部位筛选及机制[J]. 井冈山大学学报(自然科学版), 2023, 44(2): 92-99.
[57]  Tzivion, G., Dobson, M. and Ramakrishnan, G. (2011) FoxO Transcription Factors; Regulation by AKT and 14-3-3 Proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 1938-1945.
https://doi.org/10.1016/j.bbamcr.2011.06.002
[58]  张娜, 张紫燕, 赵凌霞, 等. FoxO1转录因子在巨噬细胞中的表达与炎症的关系[J]. 系统医学, 2016, 1(9): 1-5, 46.
https://doi.org/10.19368/j.cnki.2096-1782.2016.09.001
[59]  厉振宇. Foxo1介导脑出血损伤后的炎症反应及其机制研究[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2016.
[60]  汪诗沁, 刘丹, 叶晓川, 等. UPLC-Q-TOF-MS/MS结合网络药理学探讨福白菊药效物质基础及其抗炎作用机制[J]. 中国中药杂志, 2022, 47(15): 4190-4201.
https://doi.org/10.19540/j.cnki.cjcmm.20220401.201
[61]  黄家望, 马心悦, 凡博砚, 等. Toll样受体4在A型流感病毒诱导的小鼠肺部炎症中的作用机制[J]. 中国病理生理杂志, 2023, 39(8): 1357-1365.
[62]  王学锷, 朱运奎, 李超然, 等. AECOPD合并呼吸道病毒感染的病原体分布、血清炎症因子水平变化及临床意义[J]. 海南医学, 2023, 34(5): 676-679.
[63]  周彦希. 广藿香油治疗急性细菌性上呼吸道感染的实验研究[D]: [硕士学位论文]. 成都: 成都中医药大学, 2015.
[64]  唐伟丽, 张涛, 韩欣妍, 等. 基于网络药理学探讨“秦药”复方双花片治疗流行性腮腺炎的作用机制[J]. 中国药事, 2023, 37(3): 276-286.
[65]  刘文军. MMP-9、TNF-α表达与上下呼吸道炎症反应一致性[D]: [硕士学位论文]. 泸州: 泸州医学院, 2010.
[66]  庞其杭. 基于cAMP/PKA/AQP1信号通路探讨养阴补肺方止咳、平喘、祛痰的作用及机制研究[D]: [硕士学位论文]. 长春: 长春中医药大学, 2023.
https://doi.org/10.26980/d.cnki.gcczc.2023.000584
[67]  杨丽萍. JAK/STAT3通路与MAPK通路协同调节早期炎症介质TNF-α转录活性[D]: [博士学位论文]. 北京: 中国人民解放军军医进修学院, 2008.
[68]  Liu, X., Yin, S., Chen, Y., et al. (2018) LPS-Induced Proinflammatory Cytokine Expression in Human Airway Epithelial Cells and Macrophages via NF-KappaB, STAT3 or AP-1 Activation. Molecular Medicine Reports, 17, 5484-5491.
https://doi.org/10.3892/mmr.2018.8542
[69]  杜海涛, 王平, 李娜, 等. 基于网络药理学探讨金荞麦抗呼吸道合胞病毒作用机制[J]. 山东科学, 2022, 35(4): 28-37.
[70]  许昊男, 王兆耀, 吴慧敏, 等. 蓝芩口服液治疗上呼吸道感染作用机制网络药理学研究[J]. 中国药业, 2023, 32(16): 40-47.
[71]  Altrichter, S., Hawro, T., Liedtke, M., et al. (2018) In Chronic Spontaneous Urticaria, IgE against Staphylococcal Enterotoxins Is Common and Functional. Allergy, 73, 1497-1504.
https://doi.org/10.1111/all.13381
[72]  Kolkhir, P., Metz, M., Altrichter, S., et al. (2017) Comorbidity of Chronic Spontaneous Urticaria and Autoimmune Thyroid Diseases: A Systematic Review. Allergy, 72, 1440-1460.
https://doi.org/10.1111/all.13182
[73]  Tan, R.-J., Sun, H.-Q., Zhang, W., et al. (2016) A 21-35 kDa Mixed Protein Component from Helicobacter Pylori Activates Mast Cells Effectively in Chronic Spontaneous Urticaria. Helicobacter, 21, 565-574.
https://doi.org/10.1111/hel.12312
[74]  Rumzhum, N.N. and Ammit, A.J. (2016) Cyclooxygenase 2: Its Regulation, Role and Impact in Airway Inflammation. Clinical & Experimental Allergy, 46, 397-410.
https://doi.org/10.1111/cea.12697
[75]  Stables, M.J., Newson, J., Ayoub, S.S., et al. (2010) Priming Innate Immune Responses to Infection by Cyclooxygenase Inhibition Kills Antibiotic-Susceptible and-Resistant Bacteria. Blood, 116, 2950-2959.
https://doi.org/10.1182/blood-2010-05-284844
[76]  Sadikot, R.T., Zeng, H., Azim, A.C., et al. (2007) Bacterial Clearance of Pseudomonas aeruginosa Is Enhanced by the Inhibition of COX-2. European Journal of Immunology, 37, 1001-1009.
https://doi.org/10.1002/eji.200636636
[77]  广东省药学会. 抗呼吸道病毒药物临床药学指引[J]. 今日药学, 2020, 30(10): 649-667.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413