全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

国外人形机器人技术前沿及产业发展形势研判
Research and Judgment on Foreign Humanoid Robot Technology Frontiers and Industrial Development Situation

DOI: 10.12677/airr.2024.132026, PP. 246-254

Keywords: 人形机器人,通用人工智能,技术前沿,产业发展
Humanoid Robots
, Artificial General Intelligence (AGI), Technology Frontier, Industrial Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

人形机器人技术加速演进,正成为全球科技创新的制高点和经济增长的新引擎。世界各国纷纷制定相关战略规划抢占新高地。当前全球人形机器人研究正处于技术研发阶段,产业发展尚未起步。因此,研究利用文献计量工具CiteSpace绘制关键词和时间线聚类知识图谱可以发现,研究热点主要包括人机协作、力学控制、仿真模拟、深度学习、柔性材料等多个方面。前沿趋势包括“电子皮肤”将成为产业化落地的突破点。通用人工智能赋能人形机器人机遇与风险并存。仿生研发创新将迎来爆发。此外,对国际上人形机器人产业最新动态进行梳理发现:当前国外人形机器人技术研发主要依靠企业自发,企业多次技术突破实现人形机器人性能的持续迭代升级,人形机器人落地仍面临算力不足、技术薄弱、成本高昂、数据泄露四大挑战。由此,研究提出加大技术研发政策支持、借鉴电动汽车发展经验、优先落地于制造业等建议,为相关技术及产业研究人员提供必要参考。
The accelerated evolution of humanoid robot is becoming the commanding heights of global technological innovation and a new engine for economic growth. The world has formulated relevant strategic plans. Now, global humanoid robot research is in the technology R&D stage, and industrial development has not yet started. Therefore, the study uses the bibliometric tool CiteSpace to draw a knowledge graph for keyword and timeline clustering. It can be found that research hot spots mainly include human-machine collaboration, mechanical control, simulation, deep learning, flexible materials and others. Frontier trends include that “e-skin” is the breakthrough point for the industrialization. AGI empowers humanoid robots with both opportunities and risks. Bionic R&D innovation will usher in an explosion. Besides, a review of the development of the international related industry drew that: foreign humanoid robot technology research and development mainly relies on the initiative of enterprises. Enterprises have made many technological breakthroughs to achieve continuous iterative upgrades of humanoid robot performance. Humanoid robots industry still faces the challenges of insufficient computing power, weak technology, high costs, and data leakage. Therefore, the study puts forward suggestions such as increasing policy support for technology research and development, learning from the experience of electric vehicles, and giving priority to the manufacturing industry, providing necessary reference for relevant technology and industry researchers.

References

[1]  European Commission (2020) Horizon 2020.
https://ec.europa.eu/programmes/horizon 2020/en/what-horizon-2020
[2]  BMBF (2018) Bericht der Bundesregierung zur Hightech-Strategie 2025.
https://www.bmbf.de/SharedDocs/Publikationen/de/bmbf/1/138398_Bericht_zur_Hightech-Strategie_2025.pdf?__blob=publicationFile&v=5
[3]  National Science Foundation (2021) National Robotics Initiative 3.0: Innovations in Integration of Robotics (NRI-3.0).
https://www.nsf.gov/pubs/2021/nsf21559/nsf21559.htm#toc
[4]  International Federation of Robotics (IFR) (2023) World Robotics R&D Programs.
https://ifr.org/ifr-press-releases/news/robotics-research-how-asia-europe-and-america-invest
[5]  Asfour, T., Waechter, M., et al. (2019) ARMAR-6: A High-Performance Humanoid for Human-Robot Collaboration in Real-World Scenarios. IEEE Robotics & Automation Magazine, 26, 108-121.
https://doi.org/10.1109/MRA.2019.2941246
[6]  Kawaharazuka, K., Tsuzuki, K., et al. (2020) Object Recognition, Dynamic Contact Simulation, Detection, and Control of the Flexible Musculoskeletal Hand Using a Recurrent Neural Network with Parametric Bias. IEEE Robotics and Automation Letters, 5, 4580-4587.
https://doi.org/10.1109/LRA.2020.3002199
[7]  Xie, Z., Ling, H.Y., Kim, N.H. and van de Panne, M. (2020) ALLSTEPS: Curriculum-Driven Learning of Stepping Stone Skills. Computer Graphics Forum, 39, 213-224.
https://doi.org/10.1111/cgf.14115
[8]  Rodriguez-cianca, D., Weckx, M., et al. (2019) A Variable Stiffness Actuator Module with Favorable Mass Distribution for a Bio-inspired Biped Robot. Frontiers in Neurorobotics, 13, Article 449943.
https://doi.org/10.3389/fnbot.2019.00020
[9]  Kingston, Z. and Kavraki, L.E. (2023) Scaling Multimodal Planning: Using Experience and Informing Discrete Search. IEEE Transactions on Robotics, 39, 128-146.
https://doi.org/10.1109/TRO.2022.3197080
[10]  Ahn, H., Kim, J., Kim, K. and Oh, S. (2020) Generative Autoregressive Networks for 3D Dancing Move Synthesis From Music. IEEE Robotics and Automation Letters, 5, 3501-3508.
https://doi.org/10.1109/LRA.2020.2977333
[11]  Jacobs, O.L., Gazzaz, K. and Kingstone, A. (2022) Mind the Robot! Variation in Attributions of Mind to a Wide Set of Real and Fictional Robots. International Journal of Social Robotics, 14, 529-537.
https://doi.org/10.1007/s12369-021-00807-4
[12]  Trobinger, M., Christoph, J., et al. (2021) Introducing GARMI—A Service Robotics Platform to Support the Elderly at Home: Design Philosophy, System Overview and First Results. IEEE Robotics and Automation Letters, 6, 5857-5864.
https://doi.org/10.1109/LRA.2021.3082012
[13]  Cui, C. and Park, S. (2021) In-Robot Network Architectures for Humanoid Robots with Human Sensor and Motor Functions. IEEE Access, 9, 89325-89335.
https://doi.org/10.1109/ACCESS.2021.3082143
[14]  Kaymak, ?., U?ar, A. and Güzelis, C. (2023) Development of a New Robust Stable Walking Algorithm for a Humanoid Robot Using Deep Reinforcement Learning with Multi-Sensor Data Fusion. Electronics, 12, Article 568.
https://doi.org/10.3390/electronics12030568
[15]  Jeon, S., Lim, S.C., Trung, T.Q., Jung, M. and Lee, N.E. (2019) Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Architecture, and Data Acquisition Method. Proceedings of the IEEE, 107, 2065-2083.
https://doi.org/10.1109/JPROC.2019.2930808
[16]  Tanioka, T., Yokotani, T., et al. (2021) Development Issues of Healthcare Robots: Compassionate Communication for Older Adults with Dementia. International Journal of Environmental Research and Public Health, 18, Article 4538.
https://doi.org/10.3390/ijerph18094538
[17]  Popescu, A.L., Popescu, N., et al. (2022) IoT and AI-Based Application for Automatic Interpretation of the Affective State of Children Diagnosed with Autism. Sensors, 22, Article 2528.
https://doi.org/10.3390/s22072528
[18]  朱秋国, 熊蓉. 人形机器人技术现状及场景应用思考[J]. 机器人产业, 2023(4): 14-19.
[19]  Chatterjee, S., Chaudhuri, R. and Vrontis, D. (2024) Usage Intention of Social Robots for Domestic Purpose: From Security, Privacy, and Legal Perspectives. Information Systems Frontiers, 26, 121-136.
https://doi.org/10.1007/s10796-021-10197-7
[20]  Chignoli, M. and Wensing, P.M. (2020) Variational-Based Optimal Control of Underactuated Balancing for Dynamic Quadrupeds. IEEE Access, 8, 49785-49797.
https://doi.org/10.1109/ACCESS.2020.2980446
[21]  Yang, J.J., Chew, E. and Liu, P.C. (2021) Service Humanoid Robotics: A Novel Interactive System Based on Bionic-Companionship Framework. PeerJ Computer Science, 7, e674.
https://doi.org/10.7717/peerj-cs.674
[22]  Electrek (2023) Tesla Unveils Optimus Gen 2: Its Next Generation Humanoid Robot.
https://electrek.co/2023/12/12/tesla-unveils-optimus-gen-2-next-generation-humanoid-robot/
[23]  IoT World Today (2024) Tesla Humanoid Robot Showcases Improved Walking Ability in New Video.
https://www.iotworldtoday.com/robotics/tesla-optimus-showcases-improved-walking-ability-in-new-video
[24]  顾浩楠. 人形机器人历史沿革与产业链浅析[J]. 机器人技术与应用, 2023(4): 6-8.
[25]  Goldman Sachs (2022) Humanoid Robots: Sooner than You Might Think.
https://www.goldmansachs.com/intelligence/pages/humanoid-robots.html
[26]  孟繁科. 人形机器人亟待突破的四大难题[J]. 中国工业和信息化, 2023(9): 8-12.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413