全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

四氧化三铁原位修饰石墨烯复合材料的理化性能调控及应用
Regulating the Electrochemical Performance of In-Situ Modification Graphene Composite Materials with Fe3O4 and Applications

DOI: 10.12677/hjcet.2024.143018, PP. 157-167

Keywords: 激光诱导石墨烯,四氧化三铁原位修饰,理化性能,超级电容器,电磁干扰
Laser-Induced Graphene
, Fe3O4 In-Situ Modification, Physicochemical Properties, Supercapacitors, Electromagnetic Interference

Full-Text   Cite this paper   Add to My Lib

Abstract:

在复杂电磁干扰环境中提供增强的电化学储能性能对于稳定高效的集成电路和系统具有重要的研究意义。通过激光诱导石墨烯(LIG)技术在含碳聚合物上的二次扫描制备了四氧化三铁原位修饰多孔石墨烯复合材料(LIG/Fe3O4)。控制FeCl3溶液的浓度可以显著影响Fe3O4纳米颗粒的数量和尺寸,因此可以有效调控复合材料的理化性能。此外,对不同浓度合成的LIG/Fe3O4材料进行了形貌结构和理化性质分析,结果表明,当FeCl3浓度为0.6 mol/L时,复合材料的电化学和储能性能最佳,在1 mv?s1扫速下表现出较高的面积电容(617.5 mF/cm2),约为LIG的10倍。LIG/Fe3O4还具有21.2 emu/g的最高饱和磁化强度和1132.2 S/m的出色电导率,因此可以扩展到2.6~8.2 GHz的电磁屏蔽应用。
Enhancing electrochemical energy storage performance in complex electromagnetic interference environments holds significant research importance for stable and efficient integrated circuits and systems. In this study, Fe3O4 In-situ modified porous graphene composites were prepared by double laser-induced pyrolysis of graphene on carbon-containing polymer. Controlling the concentration of FeCl3 can significantly affect the quantity and size of Fe3O4 nanoparticles, so the physicochemical properties of the composite can be effectively regulated. Furthermore, morphological structure and physicochemical property analyses were conducted on LIG/Fe3O4 materials synthesized with different concentrations. The results indicate that composite material exhibited optimal electrochemical and energy storage performance when FeCl3 concentration was 0.6 mol/L, demonstrating a high specific capacitance (617.5 mF/cm2) at a scan rate of 1 mV?s1, approximately 10 times that of LIG. The LIG/Fe3O4 composite also displayed a remarkable maximum saturation magnetization of 21.2 emu/g and outstanding electrical conductivity of 1132.2 S/m, enabling its application for electromagnetic shielding in the frequency range of 2.6~8.2 GHz.

References

[1]  Li, Y., Zhan, J.W., Chen, Q.G., et al. (2021) Emerging of Heterostructure Materials in Energy Storage: A Review. Advanced Materials, 33, Article ID: 210885.
https://doi.org/10.1002/adma.202100855
[2]  Huang, S.F., Zhu, X.L., Samrat, S., et al. (2019) Challenges and Opportunities for Supercapacitors. APL Materials, 7, Article ID: 100901.
https://doi.org/10.1063/1.5116146
[3]  Gao, Y., Xie, C. and Zheng, Z.J. (2021) Textile Composite Electrodes: Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Advanced Energy Materials, 11, Article ID: 2170012.
https://doi.org/10.1002/aenm.202170012
[4]  Gao, D., Luo, Z.L., Liu, C., et al. (2023) A Survey of Hybrid Energy Devices Based on Supercapacitors. Green Energy & Environment, 8, 972-988.
https://doi.org/10.1016/j.gee.2022.02.002
[5]  Feng, X., Ning, J., Wang, B.Y., et al. (2020) Functional Integrated Electromagnetic Interference Shielding in Flexiblemicro-Supercapacitors by Cation-Intercalation Typed Ti3C2Tx MXene. Nano Energy, 72, Article ID: 104741.
https://doi.org/10.1016/j.nanoen.2020.104741
[6]  Nan, Z., Wei, W., Lin, Z.H., et al. (2023) Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding. Nano-Micro Letters, 15, Article No. 172.
https://doi.org/10.1007/s40820-023-01122-5
[7]  Yue, T., Shen, B.X. and Gao, P. (2022) Carbon Material/MnO2 as Conductive Skeleton for Supercapacitor Electrode Material: A Review. Renewable and Sustainable Energy Reviews, 158, Article ID: 112131.
https://doi.org/10.1016/j.rser.2022.112131
[8]  Xia, Y.X., Gao, W.W. and Gao, C. (2022) A Review on Graphene-Based Electromagnetic Functional Materials: Electromagnetic Wave Shielding and Absorption. Advanced Functional Materials, 32, Article ID: 2204591.
https://doi.org/10.1002/adfm.202204591
[9]  Yin, C.M., Tao, C.-A., Cai, F.L., et al. (2016) Effects of Activation Temperature on the Deoxygenation, Specific Surface Area and Supercapacitor Performance of Graphene. Carbon, 109, 558-565.
https://doi.org/10.1016/j.carbon.2016.08.053
[10]  Jeonga, J.H., Lee, G.-W., Kim, Y.H., et al. (2019) A Holey Graphene-Based Hybrid Supercapacitor. Chemical Engineering Journal, 378, Article ID: 122126.
https://doi.org/10.1016/j.cej.2019.122126
[11]  Bi, S.G., Zhang, L.Y., Mu, C.Z., et al. (2017) Electromagnetic Interference Shielding Properties and Mechanisms of Chemically Reduced Graphene Aerogels. Applied Surface Science, 412, 529-536.
https://doi.org/10.1016/j.apsusc.2017.03.293
[12]  Ye, R.Q., James, D.K., Tour, J.M., et al. (2019) Laser‐Induced Graphene: From Discovery to Translation. Advanced Materials, 31, Article ID: 1803621.
https://doi.org/10.1002/adma.201803621
[13]  Saeed, M.H., Palacios, P., Wei, M.-D., et al. (2022) Graphene-Based Microwave Circuits: A Review. Advanced Materials, 34, Article ID: 2108473.
https://doi.org/10.1002/adma.202108473
[14]  Shen, C. and Olutunde Oyadiji, S. (2020) The Processing and Analysis of Graphene and the Strength Enhancement Effect of Graphene-Based Filler Materials: A Review. Materials Today Physics, 15, Article ID: 100257.
https://doi.org/10.1016/j.mtphys.2020.100257
[15]  Li, H., Liu, Y.Q., Lin, S., et al. (2021) Laser Crystallized Sandwich-Like MXene/Fe3O4/MXene Thin Film Electrodes for Flexible Supercapacitors. Journal of Power Sources, 497, Article ID: 229882.
https://doi.org/10.1016/j.jpowsour.2021.229882
[16]  Shu, R.W., Wu, Y., Li, W, J., et al. (2020) Fabrication of Ferroferric Oxide-Carbon/Reduced Graphene Oxide Nanocomposites Derived from Fe-Based Metal-Organic Frameworks for Microwave Absorption. Composites Science and Technology, 196, Article ID: 108240.
https://doi.org/10.1016/j.compscitech.2020.108240
[17]  Li, H.G., Wu, S.Q., You, C.Y., et al. (2021) Recent Progress in Morphological Engineering of Carbon Materials for Electromagnetic Interference Shielding. Carbon, 172, 569-596.
https://doi.org/10.1016/j.carbon.2020.10.067
[18]  Ye, R.Q., James, D.K. and Tour, J.M. (2018) Laser-Induced Graphene. Accounts of Chemical Research, 51, 1609-1620.
https://doi.org/10.1021/acs.accounts.8b00084
[19]  Lin, J., Yakobson, B.I., Tour, J.M., et al. (2014) Laser-Induced Porous Graphene Films from Commercial Polymers. Nature Communications, 5, Article No. 5714.
https://doi.org/10.1038/ncomms6714
[20]  Yin, J., Zhang, J.X., Zhang, S.D., et al. (2021) Flexible 3D Porous Graphene Film Decorated with Nickel Nanoparticles for Absorption-Dominated Electromagnetic Interference Shielding. Chemical Engineering Journal, 421, Article ID: 129763.
https://doi.org/10.1016/j.cej.2021.129763
[21]  Luo, K., Yin, X.W., Yuan, X.Y., et al. (2014) Electromagnetic Wave Absorption Properties of Graphene Modified with Carbon Nanotube/Poly(dimethyl siloxane) Composites. Carbon, 73, 185-193.
https://doi.org/10.1016/j.carbon.2014.02.054
[22]  Shi, N.Y., Gao, X.H. and Qiu, J. (2019) Synthesis and Strengthened Microwave Absorption Properties of Three-Dimensional Porous Fe3O4/Graphene Composite Foam. Ceramics International, 45, 3126-3132.
https://doi.org/10.1016/j.ceramint.2018.10.212
[23]  Wu, Z.-S., Andreas, W. and Chen, L. (2012) Three-Dimensional Nitrogen and Boron Co-Doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials, 24, 5130-5135.
https://doi.org/10.1002/adma.201201948
[24]  Zhang, J.P., Zhu, D.J., Zhang, S., et al. (2022) Asymmetric Electromagnetic Shielding Performance Based on Spatially Controlled Deposition of Nickel Nanoparticles on Carbon Nanotube Sponge. Carbon, 194, 290-296.
https://doi.org/10.1016/j.carbon.2022.04.012
[25]  Cheng, J.Y., Zhang, H.B., Ning, M.Q., et al. (2022) Emerging Materials and Designs for Low-and Multi-Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy. Advanced Functional Materials, 32, Article ID: 2200123.
https://doi.org/10.1002/adfm.202200123

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133