|
含吡嗪-2-羧酸的锌和钴同构配合物的合成、表征与性质研究
|
Abstract:
通过自然挥发法合成了2个含吡嗪-2-羧酸的同构含锌配合物1和含钴配合物2。并通过X-射线单晶衍射、红外和元素分析表征了其晶体结构。两个同构的配合物是由一个金属离子和与1个配体和1个配位水分子形成的单核结构,单核结构之间再通过O-H...H氢键作用组装成三维超分子网络结构。并测试了两配合物的紫外可见吸收和荧光及配合物2非均相类Fenton试剂的催化性质。测试结果表明,两个配合物在不同溶剂中紫外可见吸收峰均在270 nm,不同溶剂中荧光发射峰均在559 nm及配合物1的固态荧光发射峰在385 nm。含Co离子的配合物2对甲基橙(MO)溶液可以达到86.53%的降解率,显示了良好的类Fenton催化性质,表明其是一种潜在的催化降解有机污染物材料。
Isostructural complexes (zinc 1 and cobalt 2) of pyrazine-2-carboxylic acid ligand were synthesized by natural volatilization method. The structure of obtained isostructural complexes (zinc and cobalt) was characterized by X-ray crystal diffraction,IR and elemental analysis. The results showed that the two isostructural complexs was a mononuclear unit with metal ions center coordinated with one ligand and one water molecules, 3D supermolecular was formed by O-H...H hydrogen bonds interactions. In addition, the UV-Vis and fluorescence spectroscopy of the complex and catalytic property of the complex 2 for the methyl orange (MO) degradation as Fenton-like reagent were investigated. The test results indicate that Both complexes exhibit UV visible absorption peaks at 270 nm, the fluorescence emission peaks are all at 555 nm in different solvents and the solid-state fluorescence emission peaks are all at 360 nm of complex 1, respectively. The Co(II) mononuclear complex 2 exhibited Fenton-like catalytic property with the degradation rate of MO reaching 86.53%, suggesting a potential material for catalytic degradation of organic pollutants.
[1] | Danil, N.D. and Konstantin, P.B. (2021) Asymmetric Catalysis Using Metal-Organic Frameworks. Coordination Chemistry Reviews, 473, 213845-213882. https://doi.org/10.1016/j.ccr.2021.213845 |
[2] | Kumar, B., Anindita, G. and Rajib, M. (2020) Coordination Polymers as Heterogeneous Catalysts in Hydrogen Evolution and Oxygen Evolution Reactions. Chemical Communications, 56, 10824-10842. https://doi.org/10.1039/D0CC04236F |
[3] | Fan, W.D., Zhang, X.R., Kang, Z.X., et al. (2021) Isoreticular Chemistry within Metal-Organic Frameworks for Gas Storage and Separation. Coordination Chemistry Reviews, 443, 213968-214025. https://doi.org/10.1016/j.ccr.2021.213968 |
[4] | Xie, X.X., et al. (2020) Proton Conductive Carboxylate-Based Metal-Organic Frameworks. Coordination Chemistry Reviews, 403, 213100-213131. https://doi.org/10.1016/j.ccr.2019.213100 |
[5] | Luo, X.Z., Reza, A., Muhammad, T., et al. (2022) Trimetallic Metal-Organic Frameworks and Derived Materials for Environmental Remediation and Electrochemical Energy Storage and Conversion. Coordination Chemistry Reviews, 461, 214505-214529. https://doi.org/10.1016/j.ccr.2022.214505 |
[6] | Zhou, Y.T., Reza, A., Chen, J., et al. (2022) Bimetallic Metal-Organic Frameworks and MOF-Derived Composites: Recent Progress on Electro-and Photoelectrocatalytic Applications. Coordination Chemistry Reviews, 451, 214264-214307. https://doi.org/10.1016/j.ccr.2021.214264 |
[7] | Chen, J, Reza, A., Adesina, K.A., et al. (2022) Metal-Organic Frameworks and Derived Materials as Photocatalysts for Water Splitting and Carbon Dioxide Reduction. Coordination Chemistry Reviews, 469, 214664-214724. https://doi.org/10.1016/j.ccr.2022.214664 |
[8] | Samantap, L.S., Mandal, W., et al. (2020) Luminescent Metal-Organic Frameworks (LMOFs) as Potential Probes for the Recognition of Cationic Water Pollutants. Frontiers in Chemistry, 7, 1801-1821. https://doi.org/10.1039/D0QI00167H |
[9] | Mengjie, H., Man, W., Chen, L., et al. (2021) Luminescent Metal-Organic Frameworks as Chemical Sensors Based on Mechanism-Response: A Review. Dalton Transactions, 50, 3429-3449. https://doi.org/10.1039/D0DT04276E |
[10] | Qi, Y. and Enqing, G. (2019) Azide and Carboxylate as Simultaneous Coupler for Magnetic Coordination Polymers. Coordination Chemistry Reviews, 382, 1-31. https://doi.org/10.1016/j.ccr.2018.12.002 |
[11] | Salviu, S.G., Ruben, S., Ramon, A., et al. (2021) Antitumour Activity of Coordination Polymer Nanoparticles. Coordination Chemistry Reviews, 441, 213977-214001. https://doi.org/10.1016/j.ccr.2021.213977 |
[12] | Long, Q.P., Li, M.N., Zhang, W., et al. (2023) Two Mixed-Ligand Cu(II) Coordination Polymers: Magnetic Properties and Inhibitory Activity on the Osteosarcoma by Reducing the Expression of the Estrogen Receptor. Journal of Molecular Structure, 1277, 129673-129680. https://doi.org/10.1016/j.molstruc.2023.135011 |
[13] | 尹华, 刘世雄. 含2,3-吡嗪二羧酸的镉配位聚合物的合成、晶体结构和荧光性质(英文) [J]. 无机化学学报, 2009, 25(5): 893-899. |
[14] | 焦韦, 付虹, 徐晓莹, 等. 镍(Ⅱ)-吡嗪-2,3-二羧酸配合物的结构及其生物活性[J]. 沈阳化工大学学报, 2013, 27(1): 1-5. |
[15] | Sheldrick, G.M. (1996) SADABS. Siemens Area Detector Absorption Corrected Software. University of G?ttingen, G?ttingen. |
[16] | Sheldrick, G.M. (1997) SHELXL-97, Program for the Refinement of Crystal Structure. University of G?ttingen, G?ttingen. |
[17] | 宁门翠, 李理, 阎崔蓉. Fe/ZSM-5非均相Fenton降解甲基橙的研究[J]. 昆明冶金高等专科学校学报, 2021, 37(3):93-96. |
[18] | 陈小明, 蔡继文. 单晶结构分析原理与实践[M]. 第2版. 北京: 科学出版社, 2011: 1-228. |
[19] | 王桂荣, 闫云, 仝甜, 等. [Bmim]OAc-0.5Zn(OAc)2催化合成甲苯二氨基甲酸甲酯反应性能及机理[J]. 高校化学工程学报, 2023, 37(1): 68-80. |
[20] | 任小蕾, 郑楠, 王宇, 等. In2O3/ZnIn2S4复合光催化剂的制备及其降解甲基橙性能[J]. 大连工业大学学报, 2023, 42(03): 190-195. |
[21] | Min, C., Cui, L., Yang, L., et al. (2018) Metal-Organic Frameworks for Highly Efficient Heterogeneous Fenton-Like Catalysis. Coordination Chemistry Reviews, 368, 80-92. https://doi.org/10.1016/j.ccr.2018.04.012 |
[22] | 张倩, 叶英杰, 于琼燕, 等. 一个单核钻(II)超分子配合物的合成、晶体结构及类Fenton催化性质研究[J]. 化学试剂, 2022, 44(9): 1294-1298. |
[23] | Xiao, Z., Chunyu, G., Nanxi, Z., et al. (2019) A MOF Material Based on Zinc(II) and Mixed Ligands: Synthesis, Structure and Luminescence Behavior. Inorganica Chimica Acta, 496, 119032-119035. https://doi.org/10.1016/j.ica.2019.119035 |
[24] | Wang, J.K., et al. (2019) Two Zinc Coordination Polymers Constructed by 4’-Hydroxy-[1,1’-Biphenyl]-3,5-Dicar-boxylic Acid (H2BDA) and 4-Hydroxy-[1,1’-Biphenyl]-3,3’,5,5’-Tetracarboxylic Acid (H3BTA): Synthesis, Structures and Luminescence Identifying Properties. Polyhedron, 167, 85-92. https://doi.org/10.1016/j.poly.2019.04.002 |