全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2024 

血管钙化与血管内皮生长因子的研究进展
Research Progress of Vascular Calcification and Vascular Endothelial Growth Factor

DOI: 10.12677/bp.2024.142007, PP. 48-55

Keywords: 血管内皮生长因子,血管钙化,增殖迁移
Vascular Endothelial Growth Factor
, Vascular Calcification, Proliferation and Migration

Full-Text   Cite this paper   Add to My Lib

Abstract:

血管钙化是心血管系统最常见的血管疾病之一,已经被证实是一个主动的、可调控的、可预防的过程。血管钙化的病理过程类似于骨发育和软骨形成的过程,其核心是平滑肌细胞(vascular smooth muscle cell, VSMC)分化为成骨或软骨细胞,从而导致钙盐的异常沉积。血管内皮生长因子(vascular endothelial growth factor, VEGF)是内皮细胞高度特异性的血管生成因子,VEGF可促进血管内皮细胞增殖迁移、提高血管通透性并加速血管形成。在血管钙化形成过程中,VEGF及其受体表达显著上升。为了阐明VEGF在血管钙化过程中的调控机制,为血管钙化的临床治疗提供新思路,本文将重点就VEGF与血管钙化之间的关系进行综述。
Vascular calcification is one of the most common vascular diseases in cardiovascular system, which has been proven to be an active, controllable and preventable process. The pathological process of vascular calcification is similar to the process of bone development and cartilage formation, the core of which is the differentiation of vascular smooth muscle cell (VSMC) into osteoblasts or chondrocytes, which leads to abnormal deposition of calcium salts. Vascular endothelial growth factor (VEGF) is a highly specific angiogenic factor of endothelial cells. VEGF can promote the proliferation and migration of vascular endothelial cells, improve vascular permeability and accelerate the formation of blood vessels. In the process of vascular calcification, the expression of VEGF and its receptor increased significantly. In order to clarify the regulatory mechanism of VEGF in the process of vascular calcification and provide new ideas for clinical treatment of vascular calcification, this article will focus on the relationship between VEGF and vascular calcification.

References

[1]  Greenland, P., Blaha, M.J., Budoff, M.J., et al. (2018) Coronary Calcium Score and Cardiovascular Risk. Journal of the American College of Cardiology, 72, 434-447.
https://doi.org/10.1016/j.jacc.2018.05.027
[2]  Simon, A. and Levenson, J. (1993) Early Detection of Subclinical Atherosclerosis in Asymptomatic Subjects at High Risk for Cardiovascular Disease. Clinical and Experimental Hypertension (New York, NY: 1993), 15, 1069-1076.
https://doi.org/10.3109/10641969309037094
[3]  Shu, L., Yuan, Z., Li, F., et al. (2023) Oxidative Stress and Valvular Endothelial Cells in Aortic Valve Calcification. Biomedicine & Pharmacotherapy, 163, Article ID: 114775.
https://doi.org/10.1016/j.biopha.2023.114775
[4]  Leung, D.W., Cachianes, G., Kuang, W.J., et al. (1989) Vascular Endothelial Growth Factor Is a Secreted Angiogenic Mitogen. Science (New York, NY), 246, 1306-1309.
https://doi.org/10.1126/science.2479986
[5]  Mikhaylova, L., Malmquist, J. and Nurminskaya, M. (2007) Regulation of in Vitro Vascular Calcification by BMP4, VEGF and Wnt3a. Calcified Tissue International, 81, 372-381.
https://doi.org/10.1007/s00223-007-9073-6
[6]  蔡亚琳, 候晶晶, 高永宁, 等. Klotho、VEGF、BMP-7与行持续性血液透析的感染性休克合并AKI动脉钙化的相关性[J]. 中华医院感染学杂志, 2023, 33(8): 1177-1181.
[7]  Wautier, J.L. and Wautier, M.P. (2022) Vascular Permeability in Diseases. International Journal of Molecular Sciences, 23, Article No. 3645.
https://doi.org/10.3390/ijms23073645
[8]  Melincovici, C.S., Bo?ca, A.B., ?u?man, S., et al. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455-467.
https://doi.org/10.1074/jbc.M506454200
[9]  Meyer, R.D., Mohammadi, M. and Rahimi, N. (2006) A Single Amino Acid Substitution in the Activation Loop Defines the Decoy Characteristic of VEGFR-1/FLT-1. The Journal of Biological Chemistry, 281, 867-875.
[10]  Shah, A.A., Kamal, M.A. and Akhtar, S. (2021) Tumor Angiogenesis and VEGFR-2: Mechanism, Pathways and Current Biological Therapeutic Interventions. Current Drug Metabolism, 22, 50-59.
https://doi.org/10.2174/1389200221666201019143252
[11]  叶鑫, 王梦涵, 袁婉婧, 等. 健脾补肾法对人结直肠癌裸鼠VEGF-C、VEGFR-3、E-Cadherin、Vimentin表达的影响[J]. 中医药信息, 2023, 40(11): 39-42, 52.
[12]  赵丽霞, 任成波, 马峰, 等. 肺癌组织MTA1、VEGF-C表达变化及与患者临床病理特征、预后关系[J]. 广东药科大学学报, 2022, 38(1): 103-108.
[13]  Wang, X., Bove, A.M., Simone, G., et al. (2020) Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Frontiers in Cell and Developmental Biology, 8, Article ID: 599281.
https://doi.org/10.3389/fcell.2020.599281
[14]  Migliaccio, A., Castoria, G., Di Domenico, M., et al. (2002) Src Is an Initial Target of Sex Steroid Hormone Action. Annals of the New York Academy of Sciences, 963, 185-190.
https://doi.org/10.1111/j.1749-6632.2002.tb04109.x
[15]  Nakai, K., Yoneda, K., Moriue, T., et al. (2009) HB-EGF-Induced VEGF Production and ENOS Activation Depend on both PI3 Kinase and MAP Kinase in HaCaT Cells. Journal of Dermatological Science, 55, 170-178.
https://doi.org/10.1016/j.jdermsci.2009.06.002
[16]  Liu, J., Li, Y., Zhang, H., et al. (2023) Associated Genetic Variants and Potential Pathogenic Mechanisms of Brain Arteriovenous Malformation. Journal of Neurointerventional Surgery, 15, 572-578.
https://doi.org/10.1136/neurintsurg-2022-018776
[17]  Uehara, H., Cho, Y., Simonis, J., et al. (2013) Dual Suppression of Hemangiogenesis and Lymphangiogenesis by Splice-Shifting Morpholinos Targeting Vascular Endothelial Growth Factor Receptor 2 (KDR). FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27, 76-85.
https://doi.org/10.1096/fj.12-213835
[18]  Wang, Y., Fei, Z., Ma, Y.H., et al. (2012) VEGF Upregulates Homer 1a Gene Expression via the Mitogen-Activated Protein Kinase Cascade in Cultured Cortex Neurons. Neuroscience Letters, 515, 44-49.
https://doi.org/10.1016/j.neulet.2012.03.016
[19]  Cheng, L., Liu, W., Zhong, C., et al. (2021) Remodeling the Homeostasis of Pro-and Anti-Angiogenic Factors by Shenmai Injection to Normalize Tumor Vasculature for Enhanced Cancer Chemotherapy. Journal of Ethnopharmacology, 270, Article ID: 113770.
https://doi.org/10.1016/j.jep.2020.113770
[20]  Zhou, W., Liu, K., Zeng, L., et al. (2022) Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation, 146, 1855-1881.
https://doi.org/10.1161/CIRCULATIONAHA.122.061900
[21]  Milkiewicz, M., Hudlicka, O., Brown, M.D., et al. (2005) Nitric Oxide, VEGF, and VEGFR-2: Interactions in Activity-Induced Angiogenesis in Rat Skeletal Muscle. American Journal of Physiology Heart and Circulatory Physiology, 289, H336-H343.
https://doi.org/10.1152/ajpheart.01105.2004
[22]  叶晨. VEGF-C刺激的脂肪间充质干细胞通过调节炎症反应与淋巴管引流减轻TNBS介导的慢性实验性结肠炎[D]: [硕士学位论文]. 苏州: 苏州大学, 2021.
[23]  Libby, P., Loscalzo, J., Ridker, P.M., et al. (2018) Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. Journal of the American College of Cardiology, 72, 2071-2081.
https://doi.org/10.1016/j.jacc.2018.08.1043
[24]  Wu, K.W., Mo, J.L., Kou, Z.W., et al. (2017) Neurovascular Interaction Promotes the Morphological and Functional Maturation of Cortical Neurons. Frontiers in Cellular Neuroscience, 11, Article No. 290.
https://doi.org/10.3389/fncel.2017.00290
[25]  杨海霞, 靳庆玲, 林家静, 等. 黄芪甲苷通过DNA甲基化调节VEGFA参与急性低氧脑损伤的保护作用[J]. 包头医学院学报, 2023, 39(6): 5-9 19.
[26]  Villa-Bellosta, R. (2021) Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. International Journal of Molecular Sciences, 22, Article No. 13536.
https://doi.org/10.3390/ijms222413536
[27]  Duarte, Lau, F. and Giugliano, R.P. (2022) Lipoprotein(A) and Its Significance in Cardiovascular Disease: A Review. JAMA Cardiology, 7, 760-769.
https://doi.org/10.1001/jamacardio.2022.0987
[28]  Yahagi, K., Kolodgie, F.D., Lutter, C., et al. (2017) Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 191-204.
https://doi.org/10.1161/ATVBAHA.116.306256
[29]  Ejaz, A.A., Nakagawa, T., Kanbay, M., et al. (2020) Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Seminars in Nephrology, 40, 574-585.
https://doi.org/10.1016/j.semnephrol.2020.12.004
[30]  Bessueille, L. and Magne, D. (2015) Inflammation: A Culprit for Vascular Calcification in Atherosclerosis and Diabetes. Cellular and Molecular Life Sciences: CMLS, 72, 2475-2489.
https://doi.org/10.1007/s00018-015-1876-4
[31]  Zhu, Y., Han, X.Q., Sun, X.J., et al. (2020) Lactate Accelerates Vascular Calcification through NR4A1-Regulated Mitochondrial Fission and BNIP3-Related Mitophagy. Apoptosis: An International Journal on Programmed Cell Death, 25, 321-340.
https://doi.org/10.1007/s10495-020-01592-7
[32]  Neels, J.G., Leftheriotis, G. and Chinetti, G. (2023) Atherosclerosis Calcification: Focus on Lipoproteins. Metabolites, 13, Article No. 457.
https://doi.org/10.3390/metabo13030457
[33]  Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article No. 6224.
https://doi.org/10.3390/ijms23116224
[34]  Han, L., Lin, X., Yan, Q., et al. (2022) PBLD Inhibits Angiogenesis via Impeding VEGF/VEGFR2-Mediated Microenvironmental Cross-Talk between HCC Cells and Endothelial Cells. Oncogene, 41, 1851-1865.
https://doi.org/10.1038/s41388-022-02197-x
[35]  Fukai, T. and Ushio-Fukai, M. (2020) Cross-Talk between NADPH Oxidase and Mitochondria: Role in ROS Signaling and Angiogenesis. Cells, 9, Article No. 1849.
https://doi.org/10.3390/cells9081849
[36]  Fan, J., Lv, H., Li, J., et al. (2019) Roles of Nrf2/HO-1 and HIF-1α/VEGF in Lung Tissue Injury and Repair Following Cerebral Ischemia/Reperfusion Injury. Journal of Cellular Physiology, 234, 7695-7707.
https://doi.org/10.1002/jcp.27767
[37]  Li, Y., Baccouche, B., Olayinka, O., et al. (2021) The Role of the Wnt Pathway in VEGF/Anti-VEGF-Dependent Control of the Endothelial Cell Barrier. Investigative Ophthalmology & Visual Science, 62, 17.
https://doi.org/10.1167/iovs.62.12.17
[38]  Du, H., Yang, L., Zhang, H., et al. (2021) LncRNA TUG1 Silencing Enhances Proliferation and Migration of Ox-LDL-Treated Human Umbilical Vein Endothelial Cells and Promotes Atherosclerotic Vascular Injury Repairing via the Runx2/ANPEP Axis. International Journal of Cardiology, 338, 204-214.
https://doi.org/10.1016/j.ijcard.2021.05.014
[39]  Zhang, A., Wang, G., Jia, L., et al. (2019) Exosome-Mediated MicroRNA-138 and Vascular Endothelial Growth Factor in Endometriosis through Inflammation and Apoptosis via the Nuclear Factor-κB Signaling Pathway. International Journal of Molecular Medicine, 43, 358-370.
https://doi.org/10.3892/ijmm.2018.3980
[40]  Chen, Q., Lin, J., Deng, Z., et al. (2022) Exosomes Derived From Human Umbilical Cord Mesenchymal Stem Cells Protect against Papain-Induced Emphysema by Preventing Apoptosis through Activating VEGF-VEGFR2-Mediated AKT and MEK/ERK Pathways in Rats. Regenerative Therapy, 21, 216-224.
https://doi.org/10.1016/j.reth.2022.07.002
[41]  Tang, J., Wang, H., Huang, X., et al. (2020) Arterial Sca1( ) Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell, 26, 81-96.E4.
https://doi.org/10.1016/j.stem.2019.11.010
[42]  Lv, Y.X., Zhong, S., Tang, H., et al. (2018) VEGF-A and VEGF-B Coordinate the Arteriogenesis to Repair the Infarcted Heart with Vagus Nerve Stimulation. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 48, 433-449.
https://doi.org/10.1159/000491775
[43]  Tong, Q., Sun, A., Wang, Z., et al. (2022) Hybrid Heart Valves with VEGF-Loaded Zwitterionic Hydrogel Coating for Improved Anti-Calcification and Re-Endothelialization. Materials Today Bio, 17, Article ID: 100459.
https://doi.org/10.1016/j.mtbio.2022.100459
[44]  Seipelt, R.G., Backer, C.L., Mavroudis, C., et al. (2005) Osteopontin Expression and Adventitial Angiogenesis Induced by Local Vascular Endothelial Growth Factor 165 Reduces Experimental Aortic Calcification. The Journal of Thoracic and Cardiovascular Surgery, 129, 773-781.
https://doi.org/10.1016/j.jtcvs.2004.06.039

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413