全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合改进的张量相关全变分的鲁棒张量修补用于图像修复
Robust Tensor Completion Fusing Improved Tensor Correlated Total Variation for Image Restoration

DOI: 10.12677/airr.2024.132027, PP. 255-264

Keywords: 鲁棒补全,改进的张量相关全变分,先验信息,图像修复
Robust Completion
, Improved Tensor Correlated Total Variation, Prior Information, Image Restoration

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像在采集和捕捉过程中,往往存在噪声污染和缺失等退化情况,而鲁棒补全对此发挥着重要作用。目前这些方法大多利用图像的全局低秩和局部平滑先验来对其进行建模,包括独立编码方法和融合编码方法。然而,这些方法要么需要对两个以上参数进行繁琐的调整,要么平等地对待梯度矩阵/张量的每个奇异值,从而限制了处理实际问题的灵活性。在本文中,我们提出了改进的张量相关全变分(ITCTV)范数,以充分利用梯度张量的内在结构特性。所提出的ITCTV正则化器不需要权衡参数来平衡两个先验,并且进一步有效地利用了梯度张量奇异值的先验分布信息。我们将提出的方法应用在多种类型的视觉张量数据上,实验结果证明了所提出方法在图像修复上的有效性。
In the process of image acquisition and capture, there is often degradation such as noise pollution and missing, and robust completion plays an important role in this. Most current methods for image restoration exploit global low-rankness and local smoothness priors to model them, including independent coding methods and fusion coding methods. However, these methods either require tedious tuning of more than two parameters or treat each singular value of the gradient matrices/tensors equally, thus limiting the flexibility to deal with practical problems. In this paper, we propose an improved tensor correlated total variation (ITCTV) norm to take full advantage of the intrinsic structural properties of the gradient tensors. The proposed ITCTV regularizer does not need to trade-off parameters to balance the two priors, and further effectively utilizes the prior distribution information of the singular values of the gradient tensors. We apply the proposed method to various types of visual tensor data, and the experimental results prove the effectiveness of the proposed method in image restoration.

References

[1]  Hu, W., Yang, Y., Zhang, W. and Xie, Y. (2016) Moving Object Detection Using Tensor-Based Low-Rank and Saliently Fused-Sparse Decomposition. IEEE Transactions on Image Processing, 26, 724-737.
https://doi.org/10.1109/TIP.2016.2627803
[2]  Cao, X., Yao, J., Xu, Z. and Meng, D. (2020) Hyperspectral Image Classification with Convolutional Neural Network and Active Learning. IEEE Transactions on Geoscience and Remote Sensing, 58, 4604-4616.
https://doi.org/10.1109/TGRS.2020.2964627
[3]  Han, S., Tao, W., Wang, D., Tai, X.C. and Wu, X. (2009) Image Segmentation Based on Grabcut Framework Integrating Multiscale Nonlinear Structure Tensor. IEEE Transactions on Image Processing, 18, 2289-2302.
https://doi.org/10.1109/TIP.2009.2025560
[4]  Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z. and Yan, S. (2019) Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42, 925-938.
https://doi.org/10.1109/TPAMI.2019.2891760
[5]  Liu, J., Musialski, P., Wonka, P. and Ye, J. (2012) Tensor Completion for Estimating Missing Values in Visual Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 208-220.
https://doi.org/10.1109/TPAMI.2012.39
[6]  Wang, H., Zhang, F., Wang, J., Huang, T., Huang, J. and Liu, X. (2021) Generalized Nonconvex Approach for Low-Tubal-Rank Tensor Recovery. IEEE Transactions on Neural Networks and Learning Systems, 33, 3305-3319.
https://doi.org/10.1109/TNNLS.2021.3051650
[7]  Wang, Y., Peng, J., Zhao, Q., Leung, Y., Zhao, X. and Meng, D. (2017) Hyperspectral Image Restoration via Total Variation Regularized Low-Rank Tensor Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11, 1227-1243.
https://doi.org/10.1109/JSTARS.2017.2779539
[8]  Peng, J., Wang, Y., Zhang, H., Wang, J. and Meng, D. (2022) Exact Decomposition of Joint Low Rankness and Local Smoothness plus Sparse Matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 5766-5781.
https://doi.org/10.1109/TPAMI.2022.3204203
[9]  Wang, H., Peng, J., Qin, W., Wang, J. and Meng, D. (2023) Guaranteed Tensor Recovery Fused Low-Rankness and Smoothness. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 10990-11007.
https://doi.org/10.1109/TPAMI.2023.3259640
[10]  Huang, Y., Liao, G., Xiang, Y., Zhang, L., Li, J. and Nehorai, A. (2019) Low-Rank Approximation via Generalized Reweighted Iterative Nuclear and Frobenius Norms. IEEE Transactions on Image Processing, 29, 2244-2257.
https://doi.org/10.1109/TIP.2019.2949383
[11]  Chen, L., Jiang, X., Liu, X. and Haardt, M. (2022) Reweighted Low-Rank Factorization with Deep Prior for Image Restoration. IEEE Transactions on Signal Processing, 70, 3514-3529.
https://doi.org/10.1109/TSP.2022.3183466
[12]  Chen, K., Dong, H. and Chan, K.S. (2013) Reduced Rank Regression via Adaptive Nuclear Norm Penalization. Biometrika, 100, 901-920.
https://doi.org/10.1093/biomet/ast036
[13]  Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends? in Machine learning, 3, 1-122.
https://doi.org/10.1561/2200000016
[14]  Goldfarb, D. and Qin, Z. (2014) Robust Low-Rank Tensor Recovery: Models and Algorithms. SIAM Journal on Matrix Analysis and Applications, 35, 225-253.
https://doi.org/10.1137/130905010
[15]  Song, G., Ng, M.K. and Zhang, X. (2020) Robust Tensor Completion Using Transformed Tensor Singular Value Decomposition. Numerical Linear Algebra with Applications, 27, e2299.
https://doi.org/10.1002/nla.2299
[16]  Qiu, D., Bai, M., Ng, M.K. and Zhang, X. (2021) Robust Low-Rank Tensor Completion via Transformed Tensor Nuclear Norm with Total Variation Regularization. Neurocomputing, 435, 197-215.
https://doi.org/10.1016/j.neucom.2020.12.110
[17]  Qin, W., Wang, H., Zhang, F., Wang, J., Luo, X. and Huang, T. (2022) Low-Rank High-Order Tensor Completion with Applications in Visual Data. IEEE Transactions on Image Processing, 31, 2433-2448.
https://doi.org/10.1109/TIP.2022.3155949

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413