|
深层页岩气等温吸附数学模型研究
|
Abstract:
我国深层页岩气储量占比大,明确深层页岩气吸附规律对于准确评价深层页岩气储量具有十分重要的意义。然而,深层页岩储层温度压力高,远超实验测试范围,导致深层页岩气吸附规律尚不清楚。因此,采用分子模拟技术构建深层页岩干酪根模型,模拟深层页岩甲烷高温高压吸附行为,揭示深层页岩气储层原位吸附规律,在此基础上,研究了深层页岩气等温吸附数学模型。结果表明:随着温度的增加,深层页岩气吸附量减少;随着压力的增加,深层页岩气吸附量呈现先快后慢的增加,并在高压段趋于平缓;通过采用Langmuir模型、Freundlich模型以及Langmuir-Freundlich模型对模拟数据进行拟合,明确了Langmuir-Freundlich模型能够更好描述深层页岩气吸附规律。
Deep shale gas reserves account for a large proportion in China. It is of great significance to clarify the adsorption law of deep shale gas for accurate evaluation of deep shale gas reserves. However, the high temperature and pressure of deep shale reservoirs far exceed the experimental test range, leading to the unclear adsorption law of deep shale gas. Therefore, a deep shale kerogen model was constructed by molecular simulation technology to simulate the adsorption behavior of methane in deep shale at high temperature and high pressure, and to reveal the in-situ adsorption law of deep shale gas reservoirs. On this basis, the isothermal adsorption mathematical model of deep shale gas was studied. The results show that with the increase of temperature, the adsorption amount of deep shale gas decreases, and with the increase of pressure, the adsorption amount of deep shale gas increases first fast and then slowly, and tends to be flat in the high pressure section. By using the Langmuir model, Freundlich model and Langmuir-Freundlich model to fit the simulated data, it is clear that the Langmuir-Freundlich model can better describe the adsorption law of deep shale gas.
[1] | 王祥, 刘玉华, 张敏, 等. 页岩气形成条件及成藏影响因素研究[J]. 天然气地球科学, 2010, 21(2): 350-356. |
[2] | 郭旭升, 胡宗全, 李双建, 等. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报, 2023, 8(4): 461-474. |
[3] | 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. |
[4] | 梁洪彬, 张烈辉, 赵玉龙, 等. 基于分子模拟的深层海相页岩气吸附特征研究[J]. 深圳大学学报(理工版), 2021, 38(6): 598-604. |
[5] | 曹达鹏, 高广图, 汪文川. 巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储[J]. 化工学报, 2000(1): 23-30. |
[6] | 李晶辉, 韩鑫, 黄思婧, 等. 页岩干酪根吸附规律的分子模拟研究[J]. 油气藏评价与开发, 2022, 12(3): 455-461. https://doi.org/10.13809/j.cnki.cn32-1825/te.2022.03.007 |
[7] | 黄亮, 冯鑫霓, 杨琴, 等. 深层页岩干酪根纳米孔隙中甲烷微观赋存特征[J]. 石油钻探技术, 2023, 51(5): 112-120. |
[8] | 陈佳乐, 马妮萍, 国建华, 等. 页岩气在粗糙纳米孔中吸附和输运的分子模拟[J]. 原子与分子物理学报, 2024, 41(5): 67-74. https://doi.org/10.19855/j.1000-0364.2024.052002 |
[9] | 任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375. |
[10] | 侯大力, 韩鑫, 唐洪明, 等. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究[J]. 油气藏评价与开发, 2023, 13(5): 636-646. https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.05.011 |
[11] | 刘思逸, 高平, 肖贤明, 等. 四川盆地五峰——龙马溪组黑色页岩有机岩石学特征研究[J]. 现代地质, 2022, 36(5): 1281-1291. https://doi.org/10.19657/j.geoscience.1000-8527.2022.046 |
[12] | Philippe, U., Julien, C. and Marianna, Y. (2015) Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: Influence of Organic Type and Maturity. Energy Fuels, 29, 91-105. https://doi.org/10.1021/ef502154k |
[13] | Huang, S., Ma, X.H., Yang, H.Z., et al. (2022) Experimental Characterization and Molecular Modeling of Kerogen in Silurian Deep Gas Shale from Southern Sichuan Basin, China. Energy Reports, 8, 1497-1507. https://doi.org/10.1016/j.egyr.2021.12.056 |
[14] | Vandenbroucke, M. and Largeau, C. (2007) Kerogen Origin, Evolution and Structure. Organic Geochemistry, 38, 719-833. https://doi.org/10.1016/j.orggeochem.2007.01.001 |
[15] | Helgeson, C.H., Richard, L., McKenzie, F.W., et al. (2009) A Chemical and Thermodynamic Model of Oil Generation in Hydrocarbon Source Rocks. Geochimica et Cosmochimica Acta, 73, 594-695. https://doi.org/10.1016/j.gca.2008.03.004 |
[16] | 姚晨牧, 冯丽, 安亚雄, 等. 碳材料的分子模型及模拟方法在吸附中应用的研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 1-9. |
[17] | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 北京: 化学工业出版社, 2006: 35-36. |