全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

典型多水源平原区暴雨洪水特征及相关性分析
Characteristics and Correlation Analysis of Rainstorm and Flood in Typical Multi-Water Source Plain Area

, PP. 1-6

Keywords: 多水源,平原区,暴雨洪水,特征选取,相关分析,新沭河
Multi-Water Source
, Plain Area, Rainstorm and Flood, Characteristics Selection, Correlation Analysis, Xinshu River

Full-Text   Cite this paper   Add to My Lib

Abstract:

新沭河下游区域有蔷薇河、范河、石安河等洪水来源,同时接纳沂沭河闸坝调控分洪洪水,为典型多水源平原区,所纳洪水均通过三洋港闸泄洪入海。本文对新沭河下游区域洪水来源分为7个区域,对近10年发生的8场暴雨洪水过程特征进行分析,建立暴雨洪水数据集,计算各洪水来源区的暴雨洪水关系。沂沭区暴雨与三洋港闸上游水位具有较好的正相关,沂沭区暴雨对新沭河下游洪水具有控制性作用,三洋港闸调度运行应密切关注沂沭区暴雨状况。该数据集构建方法可作为雨洪大数据分析模拟计算研究的技术基础。
The downstream area of the Xinshu River has flood sources such as the Qiangwei River, Fan River, and Shi’an River, and also accepts flood control by the Yishu River gate dam, making it a typical multi water source plain area; the Xinshu River discharges all its floods into the sea through the Sanyang Port Sluice. The flood source is divided into seven regions. The main characteristics of rainstorm flood are used to an-alyze the eight rainstorm flood processes in recent 10 years,. This paper establishes the rainstorm flood data set and calculates the relationship between the rainstorm and flood in each flood source area. The rainstorm volume in Yishu District has a good positive correlation with the water level in the upstream of Sanyang Port Gate, which has a controlling effect on the flood in the downstream of Xinshu River. The rain-storm situation in Yishu District should be paid close attention to during the operation of Sanyang Port Gate. The data set construction method plays a fundamental role in the analysis and simulation of flood and rainstorm big data.

References

[1]  封一波, 王欢, 王波. 2018年新沭河特大洪水行洪分析[J]. 中国防汛抗旱, 2019, 29(12): 36-38+43.
https://doi.org/10.16867/j.issn.1673-9264.2018228
[2]  陈长奇, 毛媛媛, 张明, 等. 江苏省沂沭泗流域2019年台风“利奇马”洪涝灾害探讨[J]. 江苏水利, 2020(7): 24-27.
https://doi.org/10.16310/j.cnki.jssl.2020.07.007
[3]  陈晓成. 淮河流域颍河“2021. 7. 20”暴雨洪水特性及防洪调度启示[J]. 中国防汛抗旱, 2022, 32(7): 61-65.
https://doi.org/10.16867/j.issn.1673-9264.2022053
[4]  李明亮, 黄国新, 谭正发, 等. 桃江上游2022年“6?13”暴雨洪水特性分析及水情预警实践[J]. 人民珠江, 2023, 44(S2): 419-424.
[5]  刘媛媛, 刘业森, 刘方华, 等. 沿江城市降雨特性及雨洪关系分析——以四川泸州市为例[J/OL]. 中国防汛抗旱: 1-17[2024-01-27].
https://doi.org/10.16867/j.issn.1673-9264.2023196
[6]  LEBEDEVA, S. V., ZEMLYANOV I. V. and LOMONOSOV, A. A. Flow distribution, flooding and water engineering measures in the Volga-Akhtuba Floodplain region: 2 modeling. Russian Meteorology and Hydrology, 2018, 43(10): 655-663.
https://doi.org/10.3103/S1068373918100047
[7]  GODWIN, E., ISA, K., ANTONY, G., et al. Differentiated spa-tial-temporal flood vulnerability and risk assessment in lowland plains in eastern Uganda. Hydrology, 2022, 9(11): 201-201.
https://doi.org/10.3390/hydrology9110201
[8]  龚召熊. 长江中游平原区洪水特性的分析[J]. 人民长江, 1956, (3): 14-19.
https://doi.org/10.16232/j.cnki.1001-4179.1956.03.005
[9]  杨劲松, 王永, 尹金辉, 等. 我国冲积平原区洪水事件重建研究进展及展望[J]. 地球科学, 2022, 47(11): 3944-3959.
[10]  刘洋. 平原区洪涝灾害调查评价方法探讨及实例研究[J]. 水土保持应用技术, 2019(2): 1-4.
[11]  翟思贝, 范海玲, 杨波. 基于水文大数据分析技术的洪涝灾害预警系统设计[J]. 水利技术监督, 2022(5): 53-56+74.
[12]  云奥婷, 张静芳, 张浩斐, 张炜, 张涛. 基于人工智能技术的洪水预报调度模型关键技术与应用[J]. 内蒙古水利, 2021(6): 15-17.
[13]  韩明. 数据挖掘及其对统计学的挑战[J]. 统计研究, 2001(8): 55-57.
https://doi.org/10.19343/j.cnki.11-1302/c.2001.08.014
[14]  陈占才. 连云港临洪水利枢纽运行调度模式探析[J]. 江苏水利, 2021(6): 60-63.
[15]  王金星, 等. SL323-2011, 实时雨水情数据库表结构与标识符[S]. 北京: 中国水利水电出版社, 2011.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413