全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

粗糙度对高温目标红外辐射偏振特性的影响研究
A Study of the Effect of Roughness on the Polarization Characteristics of Infrared Radiation from a High-Temperature Objective

DOI: 10.12677/jsta.2024.123031, PP. 286-297

Keywords: 自发辐射,粗糙表面,发射角,偏振度
Spontaneous Radiation
, Rough Surface, Emission Angle, Polarization

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究SiC材料在8~14 μm波段不同粗糙度下的红外自发辐射偏振特性,基于基尔霍夫定律和菲涅尔公式结合微面元模型构建了粗糙表面偏振自发辐射模型。仿真分析了碳化硅粗糙度以及发射角对偏振度的影响,并初步进行了试验验证。结果表明,随着粗糙度的增大,碳化硅的偏振度逐渐下降;随着发射角的增加其偏振度不断增大,两者相互叠加影响其偏振度的大小,最终通过实验结论与理论分析对比其趋势基本吻合。本文的研究成果为目标物体自发辐射偏振特性以及红外偏振成像的发展提供数据基础和理论指导。
In order to study the polarization characteristics of infrared spontaneous radiation of SiC material in the 8~14 μm band with different roughness, a model of polarized spontaneous radiation from rough surfaces is constructed based on Kirchhoff’s law and Fresnel’s formula combined with the microfacet metamodel. The effects of silicon carbide roughness as well as emission angle on the polarizability are simulated and analyzed, and preliminary experimental verification is carried out. The results show that with the increase of roughness, the polarization of silicon carbide gradually decreases; with the increase of emission angle, its polarization increases, and the two superimposed on each other affect the magnitude of its polarization, and finally the experimental conclusions and theoretical analysis of the comparison of its trend basically coincide with each other. The research results of this paper provide data basis and theoretical guidance for the development of polarization characteristics of spontaneous radiation and infrared polarization imaging of target objects.

References

[1]  Cremer, F., De Jong, W. and Schutte, K. (2002) Infrared Polarization Measurements and Modeling Applied to Surface-Laid Antipersonnel Landmines. Optical Engineering, 41, 1021-1032.
https://doi.org/10.1117/1.1467362
[2]  Rogne, T.J., Smith, F.G. and Rice, J.E. (1990) Passive Target Detection Using Polarized Components of Infrared Signatures. Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray. SPIE, Vol. 1317, 242-251.
https://doi.org/10.1117/12.22061
[3]  Aron, Y. and Gronau, Y. (2005) Polarization in the MWIR: A Method to Improve Target Acquisition. Infrared Technology and Applications XXXI. SPIE, Vol. 5783, 653-661.
https://doi.org/10.1117/12.605316
[4]  Gurton, K., Felton, M., Mack, R., et al. (2010) MidIR and LWIR Polarimetric Sensor Comparison Study. Polarization: Measurement, Analysis, and Remote Sensing IX. SPIE, Vol. 7672, 44-57.
https://doi.org/10.1117/12.850341
[5]  Woolley, M., Michalson, J. and Romano, J. (2011) Observations on the Polarimetric Imagery Collection Experiment Database. Polarization Science and Remote Sensing V. SPIE, Vol. 8160, 229-244.
https://doi.org/10.1117/12.892342
[6]  Jordan, D.L. and Lewis, G. (1994) Measurements of the Effect of Surface Roughness on the Polarization State of Thermally Emitted Radiation. Optics Letters, 19, 692-694.
https://doi.org/10.1364/OL.19.000692
[7]  Gurton, K.P. and Dahmani, R. (2005) Effect of Surface Roughness and Complex Indices of Refraction on Polarized Thermal Emission. Applied Optics, 44, 5361-5367.
https://doi.org/10.1364/AO.44.005361
[8]  Sandus, O. (1965) A Review of Emission Polarization. Applied Optics, 4, 1634-1642.
https://doi.org/10.1364/AO.4.001634
[9]  Niu, J. and Li, F. (2015) The Quantitative Detection Analysis to Infrared Polarization Characteristics of Targets. Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part II. SPIE, Vol. 9522, 202-207.
https://doi.org/10.1117/12.2179551
[10]  Zhang, H., Sun, S., Du, W., et al. (2022) Polarization Characteristics of Infrared Radiation of Space Object. Eighth Symposium on Novel Photoelectronic Detection Technology and Applications. SPIE, Vol. 12169, 409-414.
https://doi.org/10.1117/12.2622384
[11]  Dogariu, A.C. and Boreman, G.D. (1996) Rough-Surface Polarization Effects of Infrared Emission. Image Propagation through the Atmosphere. SPIE, Vol. 2828, 162-170.
https://doi.org/10.1117/12.254162
[12]  Wellems, D., Ortega, S., Bowers, D., et al. (2006) Long Wave Infrared Polarimetric Model: Theory, Measurements and Parameters. Journal of Optics A: Pure and Applied Optics, 8, 914.
https://doi.org/10.1088/1464-4258/8/10/014
[13]  Reid, R.B., Oxley, M.E., Eismann, M.T., et al. (2006) Quantifying Surface Normal Estimation. Polarization: Measurement, Analysis, and Remote Sensing VII. SPIE, Vol. 6240, Article ID: 624001.
https://doi.org/10.1117/12.664161
[14]  韦顺. 红外偏振成像特性分析[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2021.
[15]  伊龙. 金属表面红外辐射偏振特性模型研究[D]: [硕士学位论文]. 合肥: 安徽建筑大学, 2021.
[16]  朱达荣, 胡子粮, 汪方斌, 等. 基于遮蔽函数修正的金属表面自发辐射偏振模型[J]. 激光与光电子学进展, 2022, 59(13): 382-387.
[17]  Gartley, M.G. (2007) Polarimetric Modeling of Remotely Sensed Scenes in the Thermal Infrared. Proceedings Polarization Science and Remote Sensing III, Volume 6682, 66820C.
https://doi.org/10.1117/12.740528
[18]  Greffet, J.J., Carminati, R., Joulain, K., et al. (2002) Coherent Emission of Light by Thermal Sources. Nature, 416, 61-64.
https://doi.org/10.1038/416061a
[19]  Born, M. and Wolf, E. (2013) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam.
[20]  Wolff, L.B., Lundberg, A. and Tang, R. (1998) Image Understanding from Thermal Emission Polarization. Proceedings 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Santa Barbara, 23-25 June 1998, 625-631.
[21]  Torrance, K.E. and Sparrow, E.M. (1967) Theory for Off-Specular Reflection from Roughened Surfaces. JOSA, 57, 1105-1114.
https://doi.org/10.1364/JOSA.57.001105
[22]  Shi, H., Liu, Y., He, C., et al. (2022) Analysis of Infrared Polarization Properties of Targets with Rough Surfaces. Optics & Laser Technology, 151, Article ID: 108069.
https://doi.org/10.1016/j.optlastec.2022.108069
[23]  Jordan, D.L., Lewis, G.D. and Jakeman, E. (1996) Emission Polarization of Roughened Glass and Aluminum Surfaces. Applied Optics, 35, 3583-3590.
https://doi.org/10.1364/AO.35.003583

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413