全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fe基合金薄带GMI效应与驱动线圈磁芯填充系数的研究
Study of the GMI Effect on Thin Strips of Fe-Based Alloys and the Core Filling Factor of Drive Coils

DOI: 10.12677/jsta.2024.123035, PP. 323-330

Keywords: 磁性材料,固化磁芯,驱动线圈,截面积,巨磁阻抗效应,磁芯填充系数
Magnetic Materials
, Cured Cores, Drive Coils, Cross Section Area, Giant Magnetic Impedance Effect, Core Filling Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了以Fe基合金薄带(Fe85.67Si7.4B1.7Cu1.3Nb3.9C0.03)作为磁芯的纵向巨磁阻抗效应与其驱动线圈磁芯填充系数之间的数量关系。研究结果表示,Fe基磁芯驱动线圈的磁芯填充系数对纵向巨磁阻抗效应(LDGMI)有着不可忽视的作用。当磁芯填充系数增大时,磁芯驱动线圈的纵向巨磁阻抗效应会变得更加明显。当驱动线圈的截面积增大时,磁芯驱动线圈的最大阻抗比(ΔZ/Z)max会呈现幂函数性减小;当磁芯填充系数与磁芯驱动线圈的最大阻抗比(ΔZ/Z)max之间存在幂函数关系。
In this paper, the quantitative relationship between the longitudinal giant magnetic impedance effect (LDGMI) of a thin strip of Fe-based alloy (Fe85.67Si7.4B1.7Cu1.3Nb3.9C0.03) as a magnetic core and the core filling factor of its drive coil is investigated. The results of the study indicated that the core filling factor of the drive coil of Fe-based cores has a non-negligible role in the longitudinal giant magnetic impedance effect (LDGMI). When the core filling factor increases, the longitudinal giant magnetic impedance effect of the core drive coil becomes more pronounced. When the cross-sectional area of the drive coil increases, the maximum impedance ratio (ΔZ/Z)max of the core drive coil decreases as a power function; when there is a power function relationship between the core filling factor and the maximum impedance ratio (ΔZ/Z)max of the core drive coil.

References

[1]  Mohri, K., Kohzawa, T., Kawashima, K., et al. (1992) Magneto-Induced Effect in Amorphous Wires. IEEE Transactions on Magnetics, 28, 3150-3152.
https://doi.org/10.1109/20.179741
[2]  Lenz, J.E. (1990) A Review of Magnetic Sensors. Proceedings of the IEEE, 78, 973-989.
https://doi.org/10.1109/5.56910
[3]  Meydan, T. (1994) Application of Amorphous Materials to Sensors. Journal of Magnetism and Magnetic Materials, 133, 525-532.
https://doi.org/10.1016/0304-8853(94)90613-0
[4]  Panina, L.V. and Mohri, K. (1994) Magneto-Impedance Effect in Amorphous Wires. Applied Physics Letters, 65, 1189-1191.
https://doi.org/10.1063/1.112104
[5]  Panina, L., Mohri, K., Bushida, K., et al. (1994) Giant-Magneto-Impedance and Magneto Inductive Effects in Amorphous Alloys. Journal of Applied Physics, 76, 6198-6203.
https://doi.org/10.1063/1.358310
[6]  Yoshizawa, Y., Oguma, S. and Yamauchi, K. (1988) New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. Journal of Applied Physics, 64, 6044-6046.
https://doi.org/10.1063/1.342149
[7]  Mohri, K., Kohsawa, T., Kawashima, K., et al. (1992) Magneto-Inductive Effect (MI effect) in Amorphous Wires. IEEE Transactions on Magnetics, 28, 3150-3152.
https://doi.org/10.1109/20.179741
[8]  杨介信, 杨燮龙, 陈国, 等. 一种新型的纵向驱动巨磁阻抗效应[J]. 科学通报, 1998, 43(10): 1051-1053.
[9]  王丽梅, 王卓, 陆轩昂, 范晓珍, 叶慧群, 郑金菊, 方允樟. Fe基合金薄带GMI效应与驱动线圈直径关系的研究[J]. 传感器技术与应用, 2021, 9(2): 35-40.
[10]  徐晓瞳. 新型铁基非晶-纳米晶合金软磁性能与宽带材制备技术研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2015.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413