全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小麦DUF760基因家族的全基因组鉴定与表达分析
Genome-Wide Identification and Expression Analysis of DUF760 Gene Family in Wheat

DOI: 10.12677/ojns.2024.123059, PP. 510-518

Keywords: 小麦,DUF760基因,全基因组分析,基因表达
Wheat
, DUF760 Gene, Whole Genome Analysis, Gene Expression

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探索DUF760基因家族在小麦生长发育中的潜在功能,对小麦DUF760基因家族进行了全基因组鉴定、蛋白特性分析、启动子顺式作用元件分析和表达模式分析。通过生物信息学技术,在小麦基因组中共鉴定到16个TaDUF760家族成员,进化树分析将其分为Group I和Group II两个亚家族,两者基因结构和motif分布存在不同的特征。通过分析启动子顺式作用元件,推测TaDUF760基因的表达受干旱、低温、光照等因素调控。对小麦转录组数据分析显示,部分TaDUF760基因在小麦各个组织中均表达,TaDUF760-6、TaDUF760-7、TaDUF760-9针对干旱和热胁迫时的反应更为强烈。本研究明确了小麦TaDUF760基因家族成员及其表达模式,为小麦功能基因的挖掘提供了理论依据。
In order to explore the potential functions of the DUF760 gene family in wheat growth and development, whole genome identification, protein characteristic analysis, promoter cis acting element analysis, and expression pattern analysis were conducted on the wheat DUF760 gene family. Through bioinformatics technology, a total of 16 TaDUF760 family members were identified in the wheat genome. Evolutionary tree analysis divided them into two subfamilies, Group I and Group II, with different gene structures and motif distributions. By analyzing the cis acting elements of the promoter, it is speculated that the expression of TaDUF760 gene is regulated by factors such as drought, low temperature, and light. Analysis of wheat transcriptome data shows that some TaDUF760 genes are expressed in various tissues of wheat, with TaDUF760-6, TaDUF760-7, and TaDUF760-9 exhibiting stronger responses to drought and heat stress. This study clarified the members and expression patterns of the TaDUF760 gene family in wheat, providing a theoretical basis for the exploration of functional genes in wheat.

References

[1]  Robert, D., Finn, P., Coggill, R., et al. (2016) The Pfam Protein Families Database: Towards a More Sustainable Future. Nucleic Acids Research, 44, D279-D285.
[2]  El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., et al. (2019) The Pfam Protein Families Database in 2019. Nucleic Acids Research, 47, D427-D432.
https://doi.org/10.1093/nar/gky995
[3]  Xin, Z., Mandaokar, A., Chen, J., Last, R.L. and Browse, J. (2007) Arabidopsis Esk1 Encodes a Novel Regulator of Freezing Tolerance. The Plant Journal, 49, 786-799.
https://doi.org/10.1111/j.1365-313X.2006.02994.x
[4]  Shen, L., Zhong, T., Wang, L., Zhang, Q. and Ye, J. (2019) Characterization the Role of a Ufc Homolog, Atauxrp3, in the Regulation of Arabidopsis Seedling Growth and Stress Response. Journal of Plant Physiology, 240, Article ID: 152990.
https://doi.org/10.1016/j.jplph.2019.152990
[5]  Yamaguchi, M., Fujimoto, H., Hirano, K., Araki-Nakamura, S., Ohmae-Shinohara, K., Fujii, A., et al. (2016) Sorghum Dw1, an Agronomically Important Gene for Lodging Resistance, Encodes a Novel Protein Involved in Cell Proliferation. Scientific Reports, 6, Article No. 28366.
https://doi.org/10.1038/srep28366
[6]  Pernas, M., García-Casado, G., Rojo, E., Solano, R. and Sánchez-Serrano, J.J. (2010) A Protein Phosphatase 2a Catalytic Subunit Is a Negative Regulator of Abscisic Acid Signalling. Plant Journal, 51, 763-778.
https://doi.org/10.1111/j.1365-313X.2007.03179.x
[7]  Kavas, M., Mostafa, K., Segin, Z., Yerlikaya, B.A., Yldrm, K. and Gkdemir, G. (2023) Genome-Wide Analysis of Duf221 Domain-Containing Gene Family Incommon Bean and Identification of Its Role on Abiotic and Phytohormone Stress Response. Genetic Resources and Crop Evolution, 70, 169-188.
https://doi.org/10.1007/s10722-022-01421-7
[8]  Temple, H., Mortimer, J.C., Tryfona, T., Yu, X., Lopez-Hernandez, F., Sorieul, M., et al. (2019) Two Members of the Duf579 Family Are Responsible for Arabinogalactan Methylation in Arabidopsis. Plant Direct, 3, e00117.
https://doi.org/10.1002/pld3.117
[9]  Mizukami, A., Inatsugi, R., Jiao, J., Kotake, T., Kuwata, K., Ootani, K., et al. (2016) The Amor Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Current Biology, 26, 1091-1097.
https://doi.org/10.1016/j.cub.2016.02.040
[10]  Zhang, F.H.X. (2019) Characterization of an Arabidopsis thaliana Duf761-Containing Protein with a Potential Role in Development and Defense Responses. Theoretical and Experimental Plant Physiology, 31, 303-316.
https://doi.org/10.1007/s40626-019-00146-w
[11]  Acosta, I.F. and Marine, P. (2019) Jasmonate Signaling during Arabidopsis Stamen Maturation. Plant and Cell Physiology, 60, 2648-2659.
https://doi.org/10.1093/pcp/pcz201
[12]  Zhao, S.Q., Li, W.C., Zhang, Y., Tidy, A.C. and Wilson, Z.A. (2019) Knockdown of Arabidopsis Root Uvb Sensitive4 Disrupts Anther Dehiscence by Suppressing Secondary Thickening in the Endothecium. Plant & Cell Physiology, 60, 2293-2306.
https://doi.org/10.1093/pcp/pcz127
[13]  Luo, C., Guo, C., Wang, W., Wang, L. and Chen, L. (2014) Overexpression of a New Stress-Repressive Gene Osdsr2 Encoding a Protein with a Duf966 Domain Increases Salt and Simulated Drought Stress Sensitivities and Reduces Aba Sensitivity in Rice. Plant Cell Reports, 33, 323-336.
https://doi.org/10.1007/s00299-013-1532-0
[14]  Cui, Y.C., et al. (2016) Ossgl, a Novel Duf1645 Domain-Containing Protein, Confers Enhanced Drought Tolerance in Transgenic Rice and Arabidopsis. Frontiers in Plant Science, 7, Article ID: 420747.
https://doi.org/10.3389/fpls.2016.02001
[15]  Guo, C., Luo, C., Guo, L., Li, M., Guo, X., Zhang, Y., et al. (2016) Ossidp366, a Duf1644 Gene, Positively Regulates Responses to Drought and Salt Stresses in Rice. Journal of Integrative Plant Biology, 58, 492-502.
https://doi.org/10.1111/jipb.12376
[16]  罗成科, 肖国举, 李明. 不同未知功能结构域蛋白家族(DUFs)基因在植物中的生物学功能[J]. 植物生理学报, 2015, 51(2): 153-158.
[17]  解美霞. 陆地棉WAK和DUF642基因家族抗黄萎病功能分析[D]: [硕士学位论文]. 保定: 河北农业大学, 2020.
[18]  Liao, J.Y.R., Friso, G., Forsythe, E.S., Michel, E.J.S., Williams, A.M., Boguraev, S.S., et al. (2022) Proteomics, Phylogenetics, and Coexpression Analyses Indicate Novel Interactions in the Plastid CLP Chaperone-Protease System. The Journal of Biological Chemistry, 298, Article ID: 101609.
https://doi.org/10.1016/j.jbc.2022.101609
[19]  Li, Q.Y., et al. (2019) Genome Wide Identification and Expression Analysis of the U-Box Gene Family in Citrus. Scientia Agricultura Sinica, No. 11, 1942-1960.
[20]  Yu, C.-S., Chen, Y.-C., Lu, C.-H. and Hwang, J.-K. (2006) Prediction of Protein Subcellular Localization. Proteins: Structure, Function, and Bioinformatics, 64, 643-651.
https://doi.org/10.1002/prot.21018
[21]  Kumar, S., Stecher, G. and Tamura, K. (2015) Mega7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[22]  Bailey, T.L., Johnson, J., Grant, C.E. and Noble, W.S. (2015) The Meme Suite. Nucleic Acids Research, 43, W39-W49.
https://doi.org/10.1093/nar/gkv416
[23]  Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., He, Y. and Xia, R. (2023) TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Molecular Plant, 16, 1733-1742.
https://doi.org/10.1016/j.molp.2023.09.010
[24]  Magali, L., Déhais Patrice, Gert, T., Kathleen, M., Yves, M., Yves, V.D.P., et al. (2002) Plantcare, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Research, 30, 325-327.
[25]  Singh, K., Chhuneja, P., Gupta, O.P., Jindal, S. and Yadav, B. (2018) Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science, 361, eaar7191.
[26]  郑晓瑜, 郭晋艳, 张毅, 等. 植物非生物胁迫诱导启动子顺式作用元件的研究方法[J]. 植物生理学报, 2011, 47(2): 129-135.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133