全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

靶向调控毛囊干细胞功能治疗雄激素脱发的研究进展
Research Progress on Targeted Regulation of Hair Follicle Stem Cell Function in the Treatment of Androgenetic Alopecia

DOI: 10.12677/pi.2024.133023, PP. 187-197

Keywords: 雄激素脱发,毛囊上皮干细胞,真皮毛乳头细胞,机制
Androgenetic Alopecia
, Hair Follicle Epithelial Stem Cells, Dermal Hair Papilla Cells, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

雄激素脱发(androgenetic alopecia, AGA)是一种最常见的脱发类型。通过靶向调控毛囊干细胞功能改善AGA是近年来的研究热点,毛囊干细胞在调节毛囊周期生长中起着至关重要的作用,具体调控策略包括:调节毛囊干细胞微环境、干预信号传导与生长因子表达等。本篇综述基于AGA的发病机制,总结了近年来靶向调控毛囊干细胞治疗AGA的相关研究,讨论了此种策略对于治疗AGA的可能性及优势,以期为进一步研究及临床应用提供参考。
Androgenetic alopecia (AGA) is one of the most common types of hair loss. Hair follicle stem cells play a vital role in regulating the growth of hair follicle cycle, and the specific regulatory strategies include: regulating the microenvironment of hair follicle stem cells, intervening in signaling and growth factor expression, etc. This review explores the pathogenesis of AGA, summarizes the recent research on targeting and regulating hair follicle stem cells, as well as the possibilities and advantages of this strategy for the treatment of AGA, with a view to providing reference for further research and clinical application.

References

[1]  Anudeep, T.C., Jeyaraman, M., Muthu, S., et al. (2022) Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics, 14, 612-637.
https://doi.org/10.3390/pharmaceutics14030612
[2]  Yuan, A.R., Bian, Q. and Gao, J.Q. (2020) Current Advances in Stem Cell-Based Therapies for Hair Regeneration. European Journal of Pharmacology, 881, Article ID: 173197.
https://doi.org/10.1016/j.ejphar.2020.173197
[3]  Wang, W., Wang, H., Long, Y., et al. (2023) Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules, 14, Article No. 20.
https://doi.org/10.3390/biom14010020
[4]  Liu, Y., Yang, S., Zeng, Y., et al. (2022) Dysregulated Behaviour of Hair Follicle Stem Cells Triggers Alopecia and Provides Potential Therapeutic Targets. Experimental Dermatology, 31, 986-992.
https://doi.org/10.1111/exd.14600
[5]  Mao, Y., Liu, P., Wei, J., et al. (2023) Cell Therapy for Androgenetic Alopecia: Elixir or Trick? Stem Cell Reviews and Reports, 19, 1785-1799.
https://doi.org/10.1007/s12015-023-10532-2
[6]  Taghiabadi, E., Nilforoushzadeh, M.A. and Aghdami, N. (2020) Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacology and Physiology, 33, 280-292.
https://doi.org/10.1159/000510152
[7]  Madaan, A., Verma, R., Singh, A.T., et al. (2018) Review of Hair Follicle Dermal Papilla Cells as in Vitro Screening Model for Hair Growth. International Journal of Cosmetic Science, 40, 429-450.
https://doi.org/10.1111/ics.12489
[8]  Fuchs, E. and Blau, H.M. (2020) Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell, 27, 532-556.
https://doi.org/10.1016/j.stem.2020.09.011
[9]  Li, G., Tang, X., Zhang, S., et al. (2020) SIRT7 Activates Quiescent Hair Follicle Stem Cells to Ensure Hair Growth in Mice. The EMBO Journal, 39, Article ID: 104365.
https://doi.org/10.15252/embj.2019104365
[10]  Zhang, B. and Chen, T. (2024) Local and Systemic Mechanisms That Control the Hair Follicle Stem Cell Niche. Nature Reviews Molecular Cell Biology, 25, 87-100.
https://doi.org/10.1038/s41580-023-00662-3
[11]  Nan, W., Li, G., Si, H., et al. (2020) All-Trans-Retinoic Acid Inhibits Mink Hair Follicle Growth via Inhibiting Proliferation and Inducing Apoptosis of Dermal Papilla Cells through TGF-β2/Smad2/3 Pathway. Acta Histochemica, 122, Article ID: 151603.
https://doi.org/10.1016/j.acthis.2020.151603
[12]  Nicu, C., Wikramanayake, T.C. and Paus, R. (2020) Clues That Mitochondria Are Involved in the Hair Cycle Clock: MPZL3 Regulates Entry into and Progression of Murine Hair Follicle Cycling. Experimental Dermatology, 29, 1243-1249.
https://doi.org/10.1111/exd.14213
[13]  Kageyama, T., Miyata, H., Seo, J., et al. (2023) In Vitro Hair Follicle Growth Model for Drug Testing. Scientific Reports, 13, 4847-4857.
https://doi.org/10.1038/s41598-023-31842-y
[14]  Hamilton, J.B. (1951) Patterned Loss of Hair in Man; Types and Incidence. Annals of the New York Academy of Sciences, 53, 708-728.
https://doi.org/10.1111/j.1749-6632.1951.tb31971.x
[15]  Wang, T.L., Zhou, C., Shen, Y.W., et al. (2010) Prevalence of Androgenetic Alopecia in China: A Community-Based Study in Six Cities. British Journal of Dermatology, 162, 843-847.
https://doi.org/10.1111/j.1365-2133.2010.09640.x
[16]  Fu, D., Huang, J., Li, K., et al. (2021) Dihydrotestosterone-Induced Hair Regrowth Inhibition by Activating Androgen Receptor in C57BL6 Mice Simulates Androgenetic Alopecia. Biomedicine & Pharmacotherapy, 137, Article ID: 111247.
https://doi.org/10.1016/j.biopha.2021.111247
[17]  Ruksiriwanich, W., Khantham, C., Muangsanguan, A., et al. (2022) Guava (Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. Plants, 11, Article No. 3514.
https://doi.org/10.3390/plants11243514
[18]  徐亚男. 多组学联合解析调控羊绒细度的功能物质及其表达验证[D]: [硕士学位论文]. 沈阳: 沈阳农业大学动物科学与医学学院, 2023.
[19]  Ceruti, J.M., Leirós, G.J. and Bala?á, M.E. (2018) Androgens and Androgen Receptor Action in Skin and Hair Follicles. Molecular and Cellular Endocrinology, 465, 122-133.
https://doi.org/10.1016/j.mce.2017.09.009
[20]  Zhang, Y., Xu, J., Jing, J., et al. (2018) Serum Levels of Androgen-Associated Hormones Are Correlated with Curative Effect in Androgenic Alopecia in Young Men. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 7770-7777.
https://doi.org/10.12659/MSM.913116
[21]  Devjani, S., Ezemma, O., Kelley, K.J., et al. (2023) Androgenetic Alopecia: Therapy Update. Drugs, 83, 701-715.
https://doi.org/10.1007/s40265-023-01880-x
[22]  Hibberts, N.A., Howell, A.E. and Randall, V.A. (1998) Balding Hair Follicle Dermal Papilla Cells Contain Higher Levels of Androgen Receptors than Those from Non-Balding Scalp. Journal of Endocrinology, 156, 59-65.
https://doi.org/10.1677/joe.0.1560059
[23]  Grymowicz, M., Rudnicka, E., Podfigurna, A., et al. (2020) Hormonal Effects on Hair Follicles. International Journal of Molecular Sciences, 21, 5342-5355.
https://doi.org/10.3390/ijms21155342
[24]  Zhang, Z., Li, W., Chang, D., et al. (2023) A Combination Therapy for Androgenic Alopecia Based on Quercetin and Zinc/Copper Dual-Doped Mesoporous Silica Nanocomposite Microneedle Patch. Bioactive Materials, 24, 81-95.
https://doi.org/10.1016/j.bioactmat.2022.12.007
[25]  Garza, L.A., Yang, C.C., Zhao, T., et al. (2011) Bald Scalp in Men with Androgenetic Alopecia Retains Hair Follicle Stem Cells but Lacks CD200-Rich and CD34-Positive Hair Follicle Progenitor Cells. Journal of Clinical Investigation, 121, 613-622.
https://doi.org/10.1172/JCI44478
[26]  Rendl, M., Polak, L. and Fuchs, E. (2008) BMP Signaling in Dermal Papilla Cells Is Required for Their Hair Follicle-Inductive Properties. Genes & Development, 22, 543-557.
https://doi.org/10.1101/gad.1614408
[27]  Suchonwanit, P., Thammarucha, S. and Leerunyakul, K. (2019) Minoxidil and Its Use in Hair Disorders: A Review. Drug Design, Development and Therapy, 13, 2777-2786.
https://doi.org/10.2147/DDDT.S214907
[28]  Feaster, B., Onamusi, T., Cooley, J.E., et al. (2023) Oral Minoxidil Use in Androgenetic Alopecia and Telogen Effluvium. Archives of Dermatological Research, 315, 201-205.
https://doi.org/10.1007/s00403-022-02331-5
[29]  Wang, C., Du, Y., Bi, L., et al. (2023) The Efficacy and Safety of Oral and Topical Spironolactone in Androgenetic Alopecia Treatment: A Systematic Review. Clinical, Cosmetic and Investigational Dermatology, 16, 603-612.
https://doi.org/10.2147/CCID.S398950
[30]  Carvalho, R, De, M., Santos, L.D.N., Ramos, P.M., et al. (2022) Bicalutamide and the New Perspectives for Female Pattern Hair Loss Treatment: What Dermatologists Should Know. Journal of Cosmetic Dermatology, 21, 4171-4175.
https://doi.org/10.1111/jocd.14773
[31]  Tang, X., Cao, C., Liang, Y., et al. (2023) Adipose-Derived Stem Cell Exosomes Antagonize the Inhibitory Effect of Dihydrotestosterone on Hair Follicle Growth by Activating Wnt/β-Catenin Pathway. Stem Cells International, 2023, Article ID: 5548112.
https://doi.org/10.1155/2023/5548112
[32]  Lolli, F., Pallotti, F., Rossi, A., et al. (2017) Androgenetic Alopecia: A Review. Endocrine, 57, 9-17.
https://doi.org/10.1007/s12020-017-1280-y
[33]  Jeong, G., Shin, S.H., Kim, S.N., et al. (2023) Ginsenoside Re Prevents 3-Methyladenine-Induced Catagen Phase Acceleration by Regulating Wnt/β-Catenin Signaling in Human Dermal Papilla Cells. Journal of Ginseng Research, 47, 440-447.
https://doi.org/10.1016/j.jgr.2022.11.002
[34]  Gao, R., Yu, Z., Lv, C., et al. (2023) Medicinal and Edible Plant Allium Macrostemon Bunge for the Treatment of Testosterone-Induced Androgenetic Alopecia in Mice. Journal of Ethnopharmacology, 315, Article ID: 116657.
https://doi.org/10.1016/j.jep.2023.116657
[35]  Choi, B.Y. (2020) Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. International Journal of Molecular Sciences, 21, 4915-4931.
https://doi.org/10.3390/ijms21144915
[36]  Soe, Z.C., Ei, Z.Z., Visuttijai, K., et al. (2023) Potential Natural Products Regulation of Molecular Signaling Pathway in Dermal Papilla Stem Cells. Molecules, 28, 5517-5536.
https://doi.org/10.3390/molecules28145517
[37]  Zheng, W. and Xu, C.H. (2023) Innovative Approaches and Advances for Hair Follicle Regeneration. ACS Biomaterials Science & Engineering, 9, 2251-2276.
https://doi.org/10.1021/acsbiomaterials.3c00028
[38]  Gentile, P. and Garcovich, S. (2019) Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells, 8, 466-487.
https://doi.org/10.3390/cells8050466
[39]  Fang, T., Xu, R., Sun, S., et al. (2023) Caizhixuan Hair Tonic Regulates both Apoptosis and the PI3K/Akt Pathway to Treat Androgenetic Alopecia. PLOS ONE, 18, e0282427.
https://doi.org/10.1371/journal.pone.0282427
[40]  Ceruti, J.M., Oppenheimer, F.M., Leirós, G.J., et al. (2021) Androgens Downregulate BMP2 Impairing the Inductive Role of Dermal Papilla Cells on Hair Follicle Stem Cells Differentiation. Molecular and Cellular Endocrinology, 520, Article ID: 111096.
https://doi.org/10.1016/j.mce.2020.111096
[41]  Kulessa, H., Turk, G. and Hogan, B.L. (2000) Inhibition of Bmp Signaling Affects Growth and Differentiation in the Anagen Hair Follicle. The EMBO Journal, 19, 6664-6674.
https://doi.org/10.1093/emboj/19.24.6664
[42]  Plikus, M.V., Mayer, J.A., De La Cruz, D., et al. (2008) Cyclic Dermal BMP Signalling Regulates Stem Cell Activation during Hair Regeneration. Nature, 451, 340-344.
https://doi.org/10.1038/nature06457
[43]  Choi, B.Y. (2018) Hair-Growth Potential of Ginseng and Its Major Metabolites: A Review on Its Molecular Mechanisms. International Journal of Molecular Sciences, 19, 2703-2716.
https://doi.org/10.3390/ijms19092703
[44]  Veltri, A., Lang, C. and Lien, W.H. (2018) Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells, 36, 22-35.
https://doi.org/10.1002/stem.2723
[45]  Yang, Y., Wang, G., Yang, Q., et al. (2023) Effect Study of Sonic Hedgehog over Expressed Hair Follicle Stem Cells in Hair Follicle Regeneration. Chinese Journal of Reparative and Reconstructive Surgery, 37, 868-878.
[46]  Wang, C., Zang, K., Tang, Z., et al. (2023) Hordenine Activated Dermal Papilla Cells and Promoted Hair Regrowth by Activating Wnt Signaling Pathway. Nutrients, 15, 694-706.
https://doi.org/10.3390/nu15030694
[47]  Wei, H., Yang, S., Yi, T., et al. (2023) CircAGK Regulates High Dihydrotestosterone-Induced Apoptosis in DPCs through the MiR-3180-5p/BAX Axis. FASEB Journal, 37, E22728.
https://doi.org/10.1096/fj.202200849R
[48]  Ma, L., Shen, H., Fang, C., et al. (2022) Camellia Seed Cake Extract Supports Hair Growth by Abrogating the Effect of Dihydrotestosterone in Cultured Human Dermal Papilla Cells. Molecules, 27, Article No. 6443.
https://doi.org/10.3390/molecules27196443
[49]  Deng, W., Hu, T., Han, L., et al. (2021) MiRNA Microarray Profiling in Patients with Androgenic Alopecia and the Effects of MiR-133b on Hair Growth. Experimental and Molecular Pathology, 118, Article ID: 104589.
https://doi.org/10.1016/j.yexmp.2020.104589
[50]  Yuan, A., Xia, F., Bian, Q., et al. (2021) Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment. ACS Nano, 15, 13759-13769.
https://doi.org/10.1021/acsnano.1c05272
[51]  Gentile, P., Scioli, M.G., Bielli, A., et al. (2019) Platelet-Rich Plasma and Micrografts Enriched with Autologous Human Follicle Mesenchymal Stem Cells Improve Hair Re-Growth in Androgenetic Alopecia. Biomolecular Pathway Analysis and Clinical Evaluation. Biomedicines, 7, Article No. 27.
https://doi.org/10.3390/biomedicines7020027
[52]  Liu, Z., He, Z., Ai, X., et al. (2024) Cardamonin-Loaded Liposomal Formulation for Improving Percutaneous Penetration and Follicular Delivery for Androgenetic Alopecia. Drug Delivery and Translational Research.
https://doi.org/10.1007/s13346-024-01519-8
[53]  Li, K., Sun, Y., Liu, S., et al. (2023) The AR/MiR-221/IGF-1 Pathway Mediates the Pathogenesis of Androgenetic Alopecia. International Journal of Biological Sciences, 19, 3307-3323.
https://doi.org/10.7150/ijbs.80481
[54]  Kim, D., Lee, E., Choi, P.G., et al. (2024) Justicia Procumbens Prevents Hair Loss in Androgenic Alopecia Mice. Biomedicine & Pharmacotherapy, 170, Article ID: 115913.
https://doi.org/10.1016/j.biopha.2023.115913
[55]  Hu, X., Li, X., Wu, S., et al. (2024) Cyanidin-3-O-Glucoside and Its Derivative Vitisin A Alleviate Androgenetic Alopecia by Exerting Anti-Androgen Effect and Inhibiting Dermal Papilla Cell Apoptosis. European Journal of Pharmacology, 963, Article ID: 176237.
https://doi.org/10.1016/j.ejphar.2023.176237
[56]  Kang, H.Y., Woo, M.J., Paik, S.J., et al. (2024) Recovery Effects of Nephelium lappaceum var. pallens (Hiern) Leenh. Extract on Testosterone-Induced Inhibition of Hair Growth in C57BL/6 Mice and Human Follicular Dermal Papilla Cells. Journal of Medicinal Food, 27, 167-175.
https://doi.org/10.1089/jmf.2023.K.0124
[57]  Yang, Y., Wang, P., Gong, Y., et al. (2023) Curcumin-Zinc Framework Encapsulated Microneedle Patch for Promoting Hair Growth. Theranostics, 13, 3675-3688.
https://doi.org/10.7150/thno.84118
[58]  Jin, Y., Li, S., Yu, Q., et al. (2023) Application of Stem Cells in Regeneration Medicine. MedComm, 4, 291-322.
https://doi.org/10.1002/mco2.291
[59]  Lee, Y.I., Kim, J., Kim, J., et al. (2020) The Effect of Conditioned Media from Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia after Nonablative Fractional Laser Treatment. Dermatologic Surgery, 46, 1698-1704.
https://doi.org/10.1097/DSS.0000000000002518
[60]  Jeong, Y.M., Sung, Y.K., Kim, W.K., et al. (2013) Ultraviolet B Preconditioning Enhances the Hair Growth-Promoting Effects of Adipose-Derived Stem Cells via Generation of Reactive Oxygen Species. Stem Cells and Development, 22, 158-168.
https://doi.org/10.1089/scd.2012.0167
[61]  Choi, N., Shin, S., Song, S., et al. (2018) Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells. International Journal of Molecular Sciences, 19, 691-706.
https://doi.org/10.3390/ijms19030691
[62]  Chen, L., Tredget, E.E., Wu, P.Y.G., et al. (2008) Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLOS ONE, 3, e1886.
[63]  Dong, L., Hao, H., Xia, L., et al. (2014) Treatment of MSCs with Wnt1a-Conditioned Medium Activates DP Cells and Promotes Hair Follicle Regrowth. Scientific Reports, 4, Article No. 5432.
https://doi.org/10.1038/srep05432
[64]  Xia, Y., Chen, J., Ding, J., et al. (2020) IGF1-and BM-MSC-Incorporating Collagen-Chitosan Scaffolds Promote Wound Healing and Hair Follicle Regeneration. American Journal of Translational Research, 12, 6264-6276.
[65]  Dong, L., Hao, H., Liu, J., et al. (2017) A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice. Stem Cells International, 2017, Article ID: 3738071.
https://doi.org/10.1155/2017/3738071
[66]  Yoon, B.S., Moon, J.H., Jun, E.K., et al. (2010) Secretory Profiles and Wound Healing Effects of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Stem Cells and Development, 19, 887-902.
https://doi.org/10.1089/scd.2009.0138
[67]  Egger, A., Tomic-Canic, M. and Tosti, A. (2020) Advances in Stem Cell-Based Therapy for Hair Loss. CellR4—Repair, Replacement, Regeneration, & Reprogramming, 8, 2894-2902.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413