全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硼氮共掺杂碳载体负载钌纳米颗粒及其电催化析氢性能研究
Research on Ru Nanoparticles Loaded on B, N Co-Doping Carbon Support for Electrocatalytic Hydrogen Evolution Performance

DOI: 10.12677/japc.2024.132013, PP. 103-109

Keywords: 超分子组装,金属–载体相互作用,电催化析氢
Supramolecular Assembly
, Metal-Support Interaction, Electrocatalytic Hydrogen Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属–载体相互作用不仅调控金属的电子结构,还可以稳定金属纳米颗粒,被认为是一种提高电解水析氢反应性能的有效策略。本文采用4,4’-联吡啶与Cs2[closo-B12H12]为前驱体,通过静电组装制备了新型硼有机聚合物(BOPs),并以此作为还原剂和载体,原位还原–煅烧两步法制备硼氮双掺杂碳载体负载钌纳米颗粒催化剂(Ru/BCN)。主要探究了合成过程中不同煅烧温度对于Ru/BCN的HER性能的影响,研究发现Ru/BCN-700展现出最佳的析氢活性,在碱性介质中仅需要17 mV的过电位就可达到10 mA cm2的电流密度,并且具有良好的稳定性和耐久性。
Metal-carrier interaction not only regulates the electronic structure of metals but also stabilizes metal nanoparticles, which is considered an effective strategy for improving the performance of electrolytic water hydrogen evolution reaction. In this paper, a novel boron organic polymer (BOPs) was prepared by electrostatic assembly using 4,4’-bipyridine and Cs2[closo-B12H12] as precursors, and BOPs was used as the reducing agent and carrier. The in situ reduction-calcination two-step method was employed to prepare ruthenium nanoparticle catalyst supported on boron-nitrogen double-doped carbon carrier (Ru/BCN). The influence of different calcination temperatures on HER properties of Ru/BCN during the synthesis process was primarily investigated. It was found that Ru/BCN-700 exhibited the best hydrogen evolution activity with a current density of 10 mA cm2 achieved at only 17 mV over potential in alkaline medium, demonstrating good stability and durability.

References

[1]  Liu, H., Nosheen, F. and Wang, X. (2015) Noble Metal Alloy Complex Nanostructures: Controllable Synthesis and Their Electrochemical Property. Chemical Society Reviews, 44, 3056-3078.
https://doi.org/10.1039/C4CS00478G
[2]  Liu, J., Ma, Q., Huang, Z., et al. (2019) Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications. Advanced Materials, 31, Article ID: 1800696.
https://doi.org/10.1002/adma.201800696
[3]  Huang, H., Yan, M., Yang, C., et al. (2019) Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 31, Article ID: 1903415.
https://doi.org/10.1002/adma.201903415
[4]  Li, X., Yang, X., Huang, Y., et al. (2019) Supported Noble-Metal Single Atoms for Heterogeneous Catalysis. Advanced Materials, 31, Article ID: 1902031.
https://doi.org/10.1002/adma.201902031
[5]  Kang, J., Qiu, X., Hu, Q., et al. (2021) Valence Oscillation and Dynamic Active Sites in Monolayer NiCo Hydroxides for Wateroxidation. Nature Catalysis, 4, 1050-1058.
https://doi.org/10.1038/s41929-021-00715-w
[6]  Campbell, C.T. (2012) Electronic Perturbations. Nature Chemistry, 4, 597-598.
https://doi.org/10.1038/nchem.1412
[7]  Liu, J., Niu, W., Liu, G., et al. (2021) Selective Epitaxial Growth of Rh Nanorods On 2H/Fcc Heterophase Au Nanosheets to Form 1D/2D Rh-Au Heterostructures for Highly Efficient Hydrogen Evolution. Journal of the American Chemical Society, 143, 4387-4396.
https://doi.org/10.1021/jacs.1c00612
[8]  Shi, Y., Ma, Z.R., Xiao, Y.Y., et al. (2021) Electronic Metal-Support Interaction Modulates Single-Atom Platinum Catalysis Forhydrogen Evolution Reaction. Nature Communications, 12, Article No. 3021.
https://doi.org/10.1038/s41467-021-23306-6
[9]  Xu, S., Niu, M., Zhao, G., et al. (2023) Size Control and Electronic Manipulation of Ru Catalyst over B, N Co-Doped Carbon Network for High-Performance Hydrogen Evolution Reaction. Nano Research, 16, 6212-6219.
https://doi.org/10.1007/s12274-022-5250-1
[10]  Sun, X., Wu, B., Li, B., et al. (2023) Strong Metal-Support Interactions for High Sintering Resistance of Ru-Based Catalysts toward the HER and ORR. Chemical Communications, 59, 10291-10294.
https://doi.org/10.1039/D3CC02529B
[11]  Sun, X., Wu, B., Chen, J., et al. (2023) Self-Assembly Synthesis of Ru Nanoparticles Anchored on B, N Co-Doping Carbon Support for Hydrogen Evolution: Electronic State Induced by the Strong Metal-Support Interactions. International Journal of Hydrogen Energy, 48, 9682-9689.
https://doi.org/10.1016/j.ijhydene.2022.12.143
[12]  Jiao, Y., Zheng, Y., Davey, K., et al. (2016) Activity Origin and Catalyst Design Principles for Electrocatalytic Hydrogen Evolution on Heteroatom-Doped Graphene. Nature Energy, 1, Article No. 16130.
https://doi.org/10.1038/nenergy.2016.130
[13]  Ito, Y., Shen, Y., Hojo, D., et al. (2016) Correlation between Chemical Dopants and Topological Defects in Catalytically Active Nanoporous Graphene. Advanced Materials, 28, 10644-10651.
https://doi.org/10.1002/adma.201604318
[14]  Guo, Y., Yuan, P., Zhang, J., et al. (2018) Carbon Nanosheets Containing Discrete Co-Nx-By-C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Zn-Air Batteries. ACS Nano, 12, 1894-1901.
https://doi.org/10.1021/acsnano.7b08721
[15]  Zheng, Y., Jiao, Y., Ge, L., et al. (2013) Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie International Edition, 52, 3110-3116.
https://doi.org/10.1002/anie.201209548
[16]  Geis, V., Guttsche, K., Knapp, C., et al. (2009) Synthesis and Characterization of Synthetically Useful Salts of the Weakly-Coordinating Dianion [B12Cl12]2-. Dalton Transactions, 2009, 2687-2694.
https://doi.org/10.1039/b821030f
[17]  Xie, Z., Li, Q., Peng, X., et al. (2022) Promoting Interfacial Charge Transfer by B/N Co-Doping Enables Efficient ORR Catalysis of Carbon-Encapsulated Fe2N. Journal of Materials Chemistry A, 10, 4191-4199.
https://doi.org/10.1039/D1TA10352K
[18]  Zhao, X., Wang, D., Xiang, C., et al. (2018) Facile Synthesis of Boron Organic Polymers for Efficient Removal and Separation of Methylene Blue, Rhodamine B, and Rhodamine 6G. ACS Sustainable Chemistry & Engineering, 6, 16777-16787.
https://doi.org/10.1021/acssuschemeng.8b04049
[19]  Cheng, Y., Pang, K., Xu, X., et al. (2020) Borate Crosslinking Synthesis of Structure Tailored Carbon-Based Bifunctional Electrocatalysts Directly from Guar Gum Hydrogels for Efficient Overall Water Splitting. Carbon, 157, 153-163.
https://doi.org/10.1016/j.carbon.2019.10.024

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413