全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

雅砻江下游河流阶地发育与构造活动关联性的研究现状
Research Status of Correlation between River Terrace Development and Tectonic Activity in the Lower Yalong River

DOI: 10.12677/ag.2024.145050, PP. 531-540

Keywords: 雅砻江,河流阶地,驱动力
Yalong River
, River Terrace, Driving Force

Full-Text   Cite this paper   Add to My Lib

Abstract:

雅砻江发源于青海省巴颜喀拉山南麓,流域横跨中国地形一、二阶梯边界,地质地貌形态丰富。雅砻江流域巨大的地形反差与区域的构造背景密切相关。雅砻江流域位于西南季风和高原季风的交汇地带,季风带来大量的降水,地表侵蚀作用强烈,水系较为发育;加之快速隆升的构造背景,该区河流强烈下切,下切幅度可达3000 m以上,形成宏伟、壮观的高山峡谷地貌。河流阶地是一种典型的层状地貌,其在研究新构造运动、古气候变化、古水系演化以及侵蚀基准面变化等方面具有不可替代的优势。在雅砻江河谷发育了较为完整的河流阶地序列,阶地保存相对完整,是研究河流阶地与构造运动和气候变化关系的极佳场所。
Originating from the southern foot of the Bayankala Mountains in Qinghai Province, the Yalong River basin spans the boundary of the first and second echelons of China’s topography and is rich in geological and geomorphologic forms. The great topographic contrast in the Yalong River Basin is closely related to the tectonic background of the region. The Yalong River basin is located at the intersection of the southwest monsoon and the plateau monsoon. The monsoon brings a lot of precipitation, the surface erosion is intense, and the water system is relatively developed. Coupled with the tectonic background of rapid uplift, the river in this area is strongly cut down, and the cut amplitude can reach more than 3000 m, forming a magnificent and spectacular mountain canyon landform. River terrace is a typical stratified landform, which has irreplaceable advantages in the study of neotectonic movement, paleoclimate change, paleo-water system evolution and erosion base level change. The Yalong River Valley has developed a relatively complete series of river terraces, and the terraces are relatively well preserved, which is an excellent place to study the relationship between river terraces and tectonic movement and climate change.

References

[1]  胡春生. 河流阶地研究进展综述[J]. 地球环境学报, 2014, 5(5): 353-362.
[2]  姜胜凡. 雅砻江堰塞事件的地貌响应[D]: [硕士学位论文]. 西宁: 青海师范大学, 2021.
[3]  李吉均方. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15): 1569-1574.
[4]  Geography P B G H W G L J D O, University L, Lanzhou, etc. (2004) The Development of Terraces in Qilianshan Mountains and the Uplift of the Tibetan Plateau. The 4th International Academic Symposium on the Qinghai Tibet Plateau, Lhasa.
[5]  Cheng, J.W. (2011) Evolution of Terraces I-III along the Anning River, Western Sichuan, Based on Pollen Records and Terrace Structure. Science China Earth Sciences, 54, 127-135.
https://doi.org/10.1007/s11430-010-4067-z
[6]  Pang, L.C. Lu, H.H., Lü, Y.W., et al. (2022) 10Be Dating of the Kuitun River Terraces in the Northern Chinese Tian Shan Foreland: Insights into Fluvial Evolution and Tectonic Shortening Pattern. Geomorphology, 412, Article ID: 108317.
https://doi.org/10.1016/j.geomorph.2022.108317
[7]  Joshi, M., Thakur, V.C., Suresh, N. and Sundriyal, Y.P. (2022) Climate-Tectonic Imprints on the Late Quaternary Ravi River Valley Terraces of the Chamba Region in the NW Himalaya. Journal of Asian Earth Sciences, 223, Article ID: 104990.
https://doi.org/10.1016/j.jseaes.2021.104990
[8]  Filho, A.P., Moreira, V.B., L?mmle, L., et al. (2022) Genesis and Distribution of Low Fluvial Terraces Formed by Holocene Climate Pulses in Brazil. Water, 14, Article No. 2977.
https://doi.org/10.3390/w14192977
[9]  Bartyik, T., Urdea, P., Kiss, T., et al. (2023) The Role of Past Climatic Variability in Fluvial Terrace Formation, a Case Study from River Mure? (Maros), Romania. Quaternary, 6, Article No. 35.
https://doi.org/10.3390/quat6020035
[10]  Gabriella, F.M., Franco, G. and Umberto, S. (2022) Geomorphology of the Po Fluvial Terraces in Turin Deduced by New Subsoil Data (NW Italy). Water, 14, Article No. 2872.
https://doi.org/10.3390/w14182872
[11]  丁莹莹, 张绪教, 何泽新, 等. 末次冰期河流下切行为对气候变化的响应模式[J]. 现代地质, 2017, 31(2): 394-405.
[12]  苏鹏. 多尺度地貌面形成过程与构造作用[D]: [博士学位论文]. 北京: 中国地震局地质研究所, 2019.
[13]  Giulia, I., Daniela, P. and Francesco, T. (2022) Enhancing the Identification and Mapping of Fluvial Terraces Combining Geomorphological Field Survey with Land-Surface Quantitative Analysis. Geosciences, 12, 425-425.
https://doi.org/10.3390/geosciences12110425
[14]  Hua, G.X., Steven, F., Yuan, W.Y., et al. (2023) Tectonic and Climatic Controls for Fluvial Terraces of the Yellow River over the past 2.6 Ma at Northeast Tibetan Plateau and Ordos Block. Journal of Mountain Science, 20, 2164-2180.
https://doi.org/10.1007/s11629-023-7909-9
[15]  田晴映, 郑文俊, 张冬丽, 等. 构造活动和气候变化对河流阶地发育的影响——以祁连山北缘洪水坝河和马营河为例[J]. 地震地质, 2017, 39(6): 1283-1296.
[16]  华北国土资源. 雅砻江流域河谷区调查研究取得新认识[J]. 华北国土资源, 2014(2): 32.
[17]  钟大赉丁. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 289-295.
[18]  赵越, 钱方, 朱大岗, 等. 青藏高原第四纪冰川的早期记录及其构造与气候含义[J]. 中国地质, 2009, 36(6): 1195-1207.
[19]  赵井东, 施雅风, 王杰. 中国第四纪冰川演化序列与MIS对比研究的新进展[J]. 地理学报, 2011, 66(7): 867-884.
[20]  李吉均. 青藏高原的地貌演化与亚洲季风[J]. 海洋地质与第四纪地质, 1999, 19(1): 7-17.
[21]  施雅风, 赵井东. 40~30kaBP中国特殊暖湿气候与环境的发现与研究过程的回顾[J]. 冰川冻土, 2009, 31(1): 1-10.
[22]  蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140.
[23]  李勇侯, 司光影, A.L. Densmore, 周荣军, M.A. Ellis, 李永昭, 梁兴中. 青藏高原东缘新生代构造层序与构造事件[J]. 中国地质, 2002, 29(1): 30-36.
[24]  王苏, 徐晓雅, 胡家富. 青藏高原东南缘的地壳结构与动力学模式研究综述[J]. 地球物理学报, 2015, 58(11): 4235-4253.
[25]  王学潮张, 刘振红,石守亮, 杨威, 赵自强. 南水北调西线工程雅砻江调水区横向构造的地质特征及成因机制[J]. 华北水利水电学院学报, 1999, 20(2): 31-36.
[26]  邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑: 地球科学), 2002, 32(12): 1020-1030 1057.
[27]  潘桂棠, 肖庆辉, 陆松年, 等. 中国大地构造单元划分[J]. 中国地质, 2009, 36(1): 1-16 255 217-228.
[28]  梁明剑, 陈立春, 冉勇康, 等. 鲜水河断裂带雅拉河段晚第四纪活动性[J]. 地震地质, 2020, 42(2): 513-525.
[29]  刘晓霞, 邵志刚. 丽江-小金河断裂带现今断层运动特征[J]. 地球物理学报, 2020, 63(3): 1117-1126.
[30]  陶亚玲. 青藏高原东缘雅砻江逆冲带新生代隆升剥露及其对高原扩展的启示[D]: [博士学位论文]. 北京: 中国地震局地质研究所, 2021.
[31]  唐若龙. 龙门山-大雪山-锦屏山推覆构造带特征[J]. 四川地质学报, 1991(1): 1-9.
[32]  Li, Z.H., Chen, J.P., Shan, Z.G., et al. (2023) Quantifying the Late Quaternary Incision Rate in the Upper Jinsha River with Dated Fluvial Terraces and Transient Tributary Profiles. Catena, 232, Article ID: 107446.
https://doi.org/10.1016/j.catena.2023.107446
[33]  Tian, Y.-C., et al. (2023) Late Quaternary Fluvial Terrace Formation in the Luan River Drainage Basin, North China and Its Possible Linkages with Climate Change and Tectonic Activation. China Geology, 6, 395-408.
https://doi.org/10.31035/cg2022075
[34]  鲍淑燕. 雅砻江下游河流阶地研究及其新构造运动意义[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2014.
[35]  程建武. 川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究[D]: [博士学位论文]. 北京: 中国地震局地质研究所, 2010.
[36]  Yorke, L., Chiverrell, R.C. and Schwenninger, J.-L. (2024) Lateglacial and Early Holocene Evolution of the Tyne Valley in Response to Climatic Shifts and Possible Paraglacial Landscape Legacies. Geomorphology, 446, Article ID: 109007.
https://doi.org/10.1016/j.geomorph.2023.109007
[37]  张俊宇. 大渡河中下游河流阶地序列及其对山体隆升的响应[D]: [硕士学位论文]. 大连: 辽宁师范大学, 2018.
[38]  郭坚. 雅砻江锦屏二级水电站局地气候影响分析[J]. 水力发电, 2008, 34(8): 1-3 7.
[39]  刘维明, 周丽琴, 陈晓清, 等. 雅砻江流域河道高程剖面上的堰塞坝印记[J]. 地学前缘, 2021, 28(2): 58-70.
[40]  吴南, 张珂, 管晓祥, 等. 1979-2018年雅砻江中上游积雪时空变化及影响因素分析[J]. 水资源保护, 2022, 38(5): 151-158.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413