全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于锥形光纤的马赫–曾德尔干涉传感器用于温度和折射率同时测量
Mach-Zehnder Interferometer Sensor Based on Tapered Fiber for Simultaneous Measurement of Temperature and Refractive Index

DOI: 10.12677/jsta.2024.123038, PP. 351-359

Keywords: 马赫–曾德尔,温度,折射率,锥形光纤,长周期光纤光栅
Mach-Zehnder
, Temperature, Refractive Index, Tapered Fiber, Long Period Fiber Grating

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于锥形光纤的MZI LPFG传感器用于同时测量温度和折射率。该结构是将一段锥形光纤两端各熔接一段无芯光纤(no-core fiber, NCF),构成马赫–曾德尔(Mach-Zehnder interference, MZI)结构来测量外界温度和折射率,其中两端的无芯光纤来充当分束器和耦合器,再利用长周期光纤光栅(Long period fiber grating, LPFG)进行温度补偿。通过MZI和LPFG的测量结果来建立灵敏度矩阵,用以同时测量温度和折射率的变化。整体结构为“单模光纤–无芯光纤–锥形光纤–无芯光纤–单模光纤–长周期光纤光栅–单模光纤”。其中MZI结构的温度灵敏度为51.4 pm/℃,折射率灵敏度为?140.7 nm/RIU;长周期光纤光栅的温度灵敏度为254 pm/℃。
This article proposes an MZI LPFG sensor based on tapered fibers for simultaneous measurement of temperature and refractive index. The structure consists of a tapered optical fiber fused with a segment of no-core fiber (NCF) at each end, forming a Mach-Zehnder interference (MZI) structure for measuring external temperature and refractive index. The no-core fibers at both ends serve as beam splitters and couplers, and temperature compensation is achieved using long-period fiber gratings (LPFG). A sensitivity matrix is established based on the measurement results of MZI and LPFG to simultaneously measure changes in temperature and refractive index. The overall structure is “single-mode fiber - no-core fiber - tapered fiber - no-core fiber - single-mode fiber - long-period fiber grating fiber - single-mode fiber”. The temperature sensitivity of the MZI structure is 51.4 pm/?C, and the refractive index sensitivity is ?140.7 nm/RIU; the temperature sensitivity of the long-period fiber grating fiber is 254 pm/?C.

References

[1]  江微微, 赵瑞峰, 卫延, 等. 基于熔融拉锥光纤布拉格光栅的光谱特性[J]. 中国激光, 2010, 37(10): 2565-2569.
[2]  Dong, X.W., Liu, W.K. and Zhao, R.F. (2013) Liquid-Level Sensor Based on Tapered Chirped Fiber Grating. Science China (Technological Sciences), 56, 471-474.
https://doi.org/10.1007/s11431-012-5095-z
[3]  Osuch, T., Markowski, K. and Jedrzejewski, K. (2016) Fiber-Optic Strain Sensors Based on Linearly Chirped Tapered Fiber Bragg Gratings with Tailored Intrinsic Chirp. IEEE Sensors Journal, 16, 7508-7514.
https://doi.org/10.1109/JSEN.2016.2601332
[4]  Li, L., Xia, L., Xie, Z. and Liu, D. (2012) All-Fiber Mach-Zehnder Interferometers for Sensing Applications. Optics Express, 20, 11109-11120.
https://doi.org/10.1364/OE.20.011109
[5]  Jasim, A.A., Hayashi, N., Harun, S.W., Ahmed, H., Penny, R., Mizuno, Y. and Nakamura, K. (2014) Refractive Index and Strain Sensing Using Inline Mach-Zehnder Interferometer Comprising Perfluorinated Graded-Index Plastic Optical Fiber. Sensors and Actuators A, 219, 94-99.
https://doi.org/10.1016/j.sna.2014.07.018
[6]  Yao, Q., Meng, H., Wang, W., Xue, H., Xiong, R., Huang, B., Tan, C. and Huang, X. (2014) Simultaneous Measurement of Refractive Index and Temperature Based on a Core-Offset Mach-Zehnder Interferometer Combined with a Fiber Bragg Grating. Sensors and Actuators A, 209, 73-77.
https://doi.org/10.1016/j.sna.2014.01.017
[7]  Lu, L., Sooley, K. and Chen, Q. (2009) Tapered Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Refractive Index and Temperature. Applied Physics Letters, 94, Article ID: 131110.
https://doi.org/10.1063/1.3115029
[8]  Yang, H.Z., Ali, M.M., Islam, M.R., Lim, K.-S., Gunawardena, D.S. and Ahmed, H. (2015) Cladless Few Mode Fiber Grating Sensor for Simultaneous Refractive Index and Temperature Measurement. Sensors and Actuators A, 228, 62-68.
https://doi.org/10.1016/j.sna.2015.03.001
[9]  Li, L., Xia, L., Xie, Z., Hao, L., Shuai, B. and Liu, D. (2012) In-Line Fiber Mach-Zehnder Interferometer for Simultaneous Measurement of Refractive Index and Temperature Based on Thinned Fiber. Sensors and Actuators A, 180, 19-24.
https://doi.org/10.1016/j.sna.2012.04.014
[10]  Wu, Q., Semenova, Y., Yan, B., Ma, Y., Wang, P., Yu, C. and Farrell, G. (2011) Fiber Refractometer Based on a Fiber Bragg Grating and Single-Mode-Multimode-Single-Mode Fiber Structure. Optics Letters, 36, 2197-2199.
https://doi.org/10.1364/OL.36.002197
[11]  Yu, X., Bu, D., Chen, X., Zhang, J. and Liu, S. (2016) Lateral Stress Sensor Based on an In-Fiber Mach-Zehnder Interferometer and Fourier Analysis. IEEE Photonics Journal, 8, Article ID: 6801710.
https://doi.org/10.1109/JPHOT.2016.2538958
[12]  张静, 李永倩. 基于少模-无芯-少模光纤结构的高灵敏度折射率传感器[J]. 应用光学, 2023, 44(2): 462-468.
[13]  Coviello, G., Finazzi, V., Villatoro, J. and Pruneri, V. (2009) Thermally Stabilized PCF-Based Sensor for Temperature Measurements up to 1000 ?C. Optics Express, 17, 21551-21559.
https://doi.org/10.1364/OE.17.021551
[14]  董婧斐, 刘颖刚, 黄亮, 等. 一种熔融拉锥型折射率和温度传感器[J]. 压电与声光, 2021, 43(6): 766-770.
[15]  刘婷, 张静, 李永倩, 等. 一种基于马赫-曾德尔干涉仪的折射率和温度同时测量传感器[J]. 光电子·激光, 2023, 34(8): 785-791.
[16]  李硕, 赵婉婷, 罗浩, 等. 增加平面玻璃板的反射率测量不同浓度NaCl液体折射率[J]. 大学物理实验, 2019, 32(2): 25-27.
[17]  Li, X., Nguyen, L.V., Becker, M., Ebendorff-Heidepriem, H., Pham, D. and Warren-Smith, S.C. (2019) Simultaneous Measurement of Temperature and Refractive Index Using an Exposed Core Microstructured Optical Fiber. IEEE Journal of Selected Topics in Quantum Electronics, 26, Article ID: 5600107.
https://doi.org/10.1109/JSTQE.2019.2908557

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413