全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Engineering  2024 

XPS Studies on Electroless As-Deposited and Annealed Ni-P Films

DOI: 10.4236/eng.2024.165010, PP. 123-133

Keywords: Ni-P, X-Ray Photoelectron Spectroscopy, Annealing, Electroless Deposition, Binding Energy, Reducing Agent

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electroless deposition has been used to deposit Ni-P films on glass slides using the reducing agent sodium hypophosphite. This has been done with a purpose to use Ni-P films as back contact for silicon carbide radiation detectors. By keeping deposition time, temperature, pH and concentration of the precursor solution constant, the film deposition has been done. XPS studies were done to analyze the composition and stoichiometry of Ni-P thin films.

References

[1]  Foley, A. and Olabi, A.G. (2017) Renewable Energy Technology Developments, Trends and Policy Implications That Can Underpin the Drive for Global Climate Change. Renewable and Sustainable Energy Reviews, 68, 1112-1114.
https://doi.org/10.1016/j.rser.2016.12.065
[2]  Amrouche, S.O., Rekioua, D., Rekioua, T. and Bacha, S. (2016) Overview of Energy Storage in Renewable Energy Systems. International Journal of Hydrogen Energy, 41, 20914-20927.
https://doi.org/10.1016/j.ijhydene.2016.06.243
[3]  Markovic, N.M. (2013) Interfacing Electrochemistry. Nature Materials, 12, 101-102.
https://doi.org/10.1038/nmat3554
[4]  Renssen, S. (2020) The Hydrogen Solution? Nature Climate Change, 10, 799-801.
https://doi.org/10.1038/s41558-020-0891-0
[5]  Kelly, N.A. (2014) Hydrogen Production by Water Electrolysis. In: Basile, A. and Iulianelli, A., Eds., Advances in Hydrogen Production, Storage and Distribution, Elsevier, Amsterdam, 159-185.
https://doi.org/10.1533/9780857097736.2.159
[6]  Ezaki, H., Morinaga, M. and Watanabe, S. (1993) Hydrogen Overpotential for Transition Metals and Alloys, and Its Interpretation Using an Electronic Model. Electrochimica Acta, 38, 557-564.
https://doi.org/10.1016/0013-4686(93)85012-N
[7]  Eftekhari, A. (2017) Electrocatalysts for Hydrogen Evolution Reaction. International Journal of Hydrogen Energy, 42, 11053-11077.
https://doi.org/10.1016/j.ijhydene.2017.02.125
[8]  Salonen, L.M., Petrovykh, D.Y. and Kolen’ko, Y.V. (2021) Sustainable Catalysts for Water Electrolysis: Selected Strategies for Reduction and Replacement of Platinum-Group Metals. Materials Today Sustainability, 11-12, Article ID: 100060.
https://doi.org/10.1016/j.mtsust.2021.100060
[9]  Zheng, Y., Jiao, Y., Jaroniec, M. and Qiao, S.Z. (2015) Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie International Edition, 54, 52-65.
https://doi.org/10.1002/anie.201407031
[10]  Gong, M., Wang, D.Y., Chen, C.C., Hwang, B.J. and Dai, H. (2016) A Mini Review on Nickel-Based Electrocatalysts for Alkaline Hydrogen Evolution Reaction. Nano Research, 9, 28-46.
https://doi.org/10.1007/s12274-015-0965-x
[11]  Faber, M.S., Lukowski, M.A., Ding, Q., Kaiser, N.S. and Jin, S. (2014) Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis. The Journal of Physical Chemistry C, 118, 21347-21356.
https://doi.org/10.1021/jp506288w
[12]  Xiao, P., Chen, W. and Wang, X. (2015) A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 5, Article ID: 1500985.
https://doi.org/10.1002/aenm.201500985
[13]  Du, H., Kong, R.M., Guo, X., Qu, F. and Li, J. (2018) Recent Progress in Transition Metal Phosphides with Enhanced Electrocatalysis for Hydrogen Evolution. Nanoscale, 10, 21617-21624.
https://doi.org/10.1039/C8NR07891B
[14]  Wang, Y., Kong, B., Zhao, D., Wang, H. and Selomulya, C. (2017) Strategies for Developing Transition Metal Phosphides as Heterogeneous Electrocatalysts for Water Splitting. Nano Today, 15, 26-55.
https://doi.org/10.1016/j.nantod.2017.06.006
[15]  Yu, F., Zhou, H., Huang, Y., Sun, J., Qin, F., Bao, J., Goddard, W.A., Chen, S. and Ren, Z. (2018) High-Performance Bifunctional Porous Non-Noble Metal Phosphide Catalyst for Overall Water Splitting. Nature Communications, 9, Article No. 2551.
https://doi.org/10.1038/s41467-018-04746-z
[16]  Ray, A., Sultana, S., Paramanik, L. and Parida, K.M. (2020) Recent Advances in Phase, Size, and Morphology-Oriented Nanostructured Nickel Phosphide for Overall Water Splitting. Journal of Materials Chemistry A, 8, 19196-19245.
https://doi.org/10.1039/D0TA05797E
[17]  Jin, M., Zhang, X., Shi, R., Lian, Q., Niu, S., Peng, O., Wang, Q. and Cheng, C. (2021) Hierarchical CoP@ Ni2P Catalysts for PH-Universal Hydrogen Evolution at High Current Density. Applied Catalysis B: Environmental, 296, Article ID: 120350.
https://doi.org/10.1016/j.apcatb.2021.120350
[18]  Wang, F., Li, Y., Shifa, T.A., Liu, K., Wang, F., Wang, Z., Xu, P., Wang, Q. and He, J. (2016) Selenium-Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie, 55, 6919-6924.
https://doi.org/10.1002/anie.201602802
[19]  Chen, W.F., Muckermana, J.T. and Fujita, E. (2013) Recent Developments in Transition Metal Carbides and Nitrides as Hydrogen Evolution Electrocatalysts. Chemical Communications, 49, 8896-8909.
https://doi.org/10.1039/c3cc44076a
[20]  Brown, D.E., Mahmood, M.N., Man, M.C.M. and Turner, A.K. (1984) Preparation and Characterization of Low Overvoltage Transition Metal Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solutions. Electrochimica Acta, 29, 1551-1556.
https://doi.org/10.1016/0013-4686(84)85008-2
[21]  Safizadeh, F., Ghali, E. and Houlachi, G. (2015) Electrocatalysis Developments for Hydrogen Evolution Reaction in Alkaline Solutions—A Review. International Journal of Hydrogen Energy, 40, 256-274.
https://doi.org/10.1016/j.ijhydene.2014.10.109
[22]  Lv, H., Xi, Z., Chen, Z., Guo, S., Yu, Y., Zhu, W., Li, Q., Zhang, X., Pan, M., Lu, G., Mu, S. and Sun, S. (2015) A New Core/Shell NiAu/Au Nanoparticle Catalyst with Pt-Like Activity for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 137, 5859-5862.
https://doi.org/10.1021/jacs.5b01100
[23]  Li, L., Zhang, G., Wang, B. Yang, T. and Yang, S. (2020) Electrochemical Formation of PtRu Bimetallic Nanoparticles for Highly Efficient and PH-Universal Hydrogen Evolution Reaction. Journal of Materials Chemistry A, 8, 2090-2098.
https://doi.org/10.1039/C9TA12300H
[24]  Park, J., Koo, B., Yoon, K.Y., Hwang, Y., Kang, M., Park, J.G. and Hyeon, T. (2005) Generalized Synthesis of Metal Phosphide Nanorods via Thermal Decomposition of Continuously Delivered Metal-Phosphine Complexes Using a Syringe Pump. Journal of the American Chemical Society, 127, 8433-8440.
https://doi.org/10.1021/ja0427496
[25]  Liu, P., Zhang, Z.X., Jun, S.W., Zhu, Y.L. and. Li, Y.X. (2019) Controlled Synthesis of Nickel Phosphide Nanoparticles with Pure-Phase Ni2P and Ni12P5 for Hydrogenation of Nitrobenzene. Reaction Kinetics, Mechanisms and Catalysis, 126, 453-461.
https://doi.org/10.1007/s11144-018-1496-8
[26]  Wang, X., Kolen’ko, Y.V. and Liu, L. (2015) Direct Solvothermal Phosphorization of Nickel Foam to Fabricate Integrated Ni2P Nanorods/Ni Electrodes for Efficient Electrocatalytic Hydrogen Evolution. Chemical Communications, 51, 6738-6741.
https://doi.org/10.1039/C5CC00370A
[27]  Liu, Z., Huang, X., Zhu, Z. and Dai, J. (2010) A Simple Mild Hydrothermal Route for the Synthesis of Nickel Phosphide Powders. Ceramics International, 36, 1155-1158.
https://doi.org/10.1016/j.ceramint.2009.12.015
[28]  Zhang, G., Xu, Q., Liu, Y., Qin, Q., Zhang, J., Qi, K., Chen, J., Wang, Z., Zheng, K., Świerczek, K. and Zheng, W. (2020) Red Phosphorus as Self-Template to Hierarchical Nanoporous Nickel Phosphides toward Enhanced Electrocatalytic Activity for Oxygen Evolution Reaction. Electrochimica Acta, 332, Article ID: 135500.
https://doi.org/10.1016/j.electacta.2019.135500
[29]  Xiao, J., Lv, Q., Zhang, Y., Zhang, Z. and Wang, S. (2016) One-Step Synthesis of Nickel Phosphide Nanowire Array Supported on Nickel Foam with Enhanced Electrocatalytic Water Splitting Performance. RSC Advances, 6, 107859-107864.
https://doi.org/10.1039/C6RA20737E
[30]  Wang, X., Kolen’ko, Y.V., Bao, X.Q., Kovnir, K. and Liu, L. (2015) One-Step Synthesis of Self-Supported Nickel Phosphide Nanosheet Array Cathodes for Efficient Electrocatalytic Hydrogen Generation. Angewandte Chemie, 54, 8188-8192.
https://doi.org/10.1002/anie.201502577
[31]  Wang, X., Li, W., Xiong, D., Petrovykh, D.Y. and Liu, L. (2016) Bifunctional Nickel Phosphide Nanocatalysts Supported on Carbon Fiber Paper for Highly Efficient and Stable Overall Water Splitting. Advanced Functional Materials, 26, 4067-4077.
https://doi.org/10.1002/adfm.201505509
[32]  Wang, X., Li, W., Xiong, D. and Liu, L. (2016) Fast Fabrication of Self-Supported Porous Nickel Phosphide Foam for Efficient, Durable Oxygen Evolution and Overall Water Splitting. Journal of Materials Chemistry A, 4, 5639-5646.
https://doi.org/10.1039/C5TA10317G
[33]  Xing, J., Zou, Z., Guo, K. and Xu, C. (2018) The Effect of Phosphating Time on the Electrocatalytic Activity of Nickel Phosphide Nanorod Arrays Grown on Ni Foam. Journal of Materials Research, 33, 556-567.
https://doi.org/10.1557/jmr.2017.399
[34]  Bains, W., Petkowski, J.J., Silva, C.S. and Seager, S. (2019) Trivalent Phosphorus and Phosphines as Components of Biochemistry in Anoxic Environments. Astrobiology, 19, 885-902.
https://doi.org/10.1089/ast.2018.1958
[35]  Li, J., Li, J., Zhou, X., Xia, Z., Gao, W., Ma, Y. and Qu, Y. (2016) Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 8, 10826-10834.
https://doi.org/10.1021/acsami.6b00731
[36]  Zhou, K., Zhou, W., Yang, L., Lu, J., Cheng, S., Mai, W., Tang, Z., Li. L. and Chen, S. (2015) Ultrahigh-Performance Pseudocapacitor Electrodes Based on Transition Metal Phosphide Nanosheets Array via Phosphorization: A General and Effective Approach. Advanced Functional Materials, 25, 7530-7538.
https://doi.org/10.1002/adfm.201503662
[37]  Wu, M., Bai, J., Wang, Y., Wang, A., Lin, X., Wang, L., Shen, Y., Wang, Z., Hagfeldt, A. and Ma, T. (2012) High-Performance Phosphide/Carbon Counter Electrode for Both Iodide and Organic Redox Couples in Dye-Sensitized Solar Cells. Journal of Materials Chemistry, 22, 11121-11127.
https://doi.org/10.1039/c2jm30832k
[38]  Lu, Y., Gua, C.D., Ge, X., Zhang, H., Huang, S., Zhao, X.Y., Wang, X.L., Tu, J.P. and Mao, S.X. (2013) Growth of Nickel Phosphide Films as Anodes for Lithium-Ion Batteries: Based on a Novel Method for Synthesis of Nickel Films using Ionic Liquids. Electrochimica Acta, 112, 212-220.
https://doi.org/10.1016/j.electacta.2013.09.035
[39]  Fullenwarth, J., Darwiche, A., Soares, A., Donnadieu, B. and Monconduit, L. (2014) NiP3: A Promising Negative Electrode for Li-and Na-Ion Batteries. Journal of Materials Chemistry A, 2, 2050-2059.
https://doi.org/10.1039/C3TA13976J
[40]  Lin, Y., Sun, K., Liu, S., Chen, X., Cheng, Y., Cheong, W.C., Chen, Z., Zheng, L., Zhang, J., Li, X., Pan, Y. and Chen, C. (2019) Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide PH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 9, Article ID: 1901213.
https://doi.org/10.1002/aenm.201901213
[41]  Zhang, N., Li, Y., Xu, J., Li, J., Wei, B., Ding, Y., Amorim, I., Thomas, R., Thalluri, S.M., Liu, Y., Yu, G. and Liu, L. (2019) High-Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bimetallic Transition Metal Phosphide Nanocrystals. ACS Nano, 13, 10612-10621.
https://doi.org/10.1021/acsnano.9b04810
[42]  Vitry, V., Sens, A. and Delaunois, F. (2014) Comparison of Various Electroless Nickel Coatings on Steel: Structure, Hardness and Abrasion Resistance. Materials Science Forum, 783-786, 1405-1413.
https://doi.org/10.4028/www.scientific.net/MSF.783-786.1405
[43]  Mandich, N.V. and Krulik, G.A. (1992) The Evolution of a Process: 50 Years of Electroless Nickel. Metal Finishing, 90, 25-27.
[44]  Karuppusamy, K. and Anantharam, R. (1992) Pit-Free Nickel Electroplating. Metal Finishing, 90, 15-19.
[45]  Okamoto, Y., Nitta, Y., Imanaka, T. and Teranishi, S. (1979) Surface Characterisation of Nickel Boride and Nickel Phosphide Catalysts by X-Ray Photoelectron Spectroscopy. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75, 2027-2039.
https://doi.org/10.1039/f19797502027
[46]  Tiwari, A.P., Lee, K., Kim, K., Kim, J., Novak, T.G. and Jeon, S. (2020) Conformally Coated Nickel Phosphide on 3D, Ordered Nanoporous Nickel for Highly Active and Durable Hydrogen Evolution. ACS Sustainable Chemistry & Engineering, 8, 17116-17123.
https://doi.org/10.1021/acssuschemeng.0c05192
[47]  Sun, T., Dong, J., Huang, Y., Ran, W., Chena, J. and Xu, L. (2018) Highly Active and Stable Electrocatalyst of Ni2P Nanoparticles Supported on 3D Ordered Macro-/Mesoporous Co-N-Doped Carbon for Acidic Hydrogen Evolution Reaction. Journal of Materials Chemistry A, 6, 12751-12758.
https://doi.org/10.1039/C8TA03672A
[48]  Ochs, D., Dieckhoff, S. and Cord, B. (2000) Characterization of Hard Disk Substrates (NiP/Al, Glass) Using XPS. Surface and Interface Analysis, 30, 12-15.
https://doi.org/10.1002/1096-9918(200008)30:1<12::AID-SIA770>3.0.CO;2-B
[49]  NIST X-Ray Photoelectron Spectroscopy Database.
https://srdata.nist.gov/xps/

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133