全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑素干细胞及其在白癜风复色过程中的作用研究进展
Progress in the Study of Melanocyte Stem Cells and Their Role in the Repigmentation Process of Vitiligo

DOI: 10.12677/pi.2024.133027, PP. 223-231

Keywords: 黑素干细胞,再生,信号调控,白癜风
Melanocyte Stem Cell
, Regeneration, Signaling Regulation, Vitiligo

Full-Text   Cite this paper   Add to My Lib

Abstract:

黑素干细胞具有无限自我更新能力,在一定条件(如伤口愈合、基因毒性药物处理和紫外线照射等)的刺激下,细胞或组织会通过再生来修复受损,即招募干细胞来分化为成熟的黑素细胞。近年来有研究发现黑素干细胞可作为皮肤和毛发的黑素细胞库,这为许多色素紊乱性疾病的治疗带来了新的希望。本文主要对黑素干细胞进行了介绍,并对黑素干细胞再生的关键信号通路、与邻近细胞之间的串扰及其在白癜风复色过程中的作用进行讨论。
Melanocyte stem cells have an unlimited self-renewal capacity, and under the stimulation of certain conditions (e.g. wound healing, genotoxic drug treatment, and ultraviolet irradiation, etc.), the cells or tissues will repair the damage by regeneration, i.e., recruiting stem cells to differentiate into mature melanocytes. In recent years, it has been found that melanocyte stem cells can serve as a reservoir of melanocytes for the skin and hair, which brings new hope for the treatment of many pigmentation disorders. This paper focuses on melanocyte stem cells and discusses the key signaling pathways of regeneration, crosstalk with neighboring cells and their role in vitiligo repigmentation.

References

[1]  Xin, T., Greco, V. and Myung, P. (2016) Hardwiring Stem Cell Communication through Tissue Structure. Cell, 164, 1212-1225.
https://doi.org/10.1016/j.cell.2016.02.041
[2]  Lee, J.H. and Fisher, D.E. (2014) Melanocyte Stem Cells as Potential Therapeutics in Skin Disorders. Expert Opinion on Biological Therapy, 14, 1569-1579.
https://doi.org/10.1517/14712598.2014.935331
[3]  Lin, J.Y. and Fisher, D.E. (2007) Melanocyte Biology and Skin Pigmentation. Nature, 445, 843-850.
https://doi.org/10.1038/nature05660
[4]  Wang, Z.H., Liu, L.P. and Zheng, Y.W. (2022) Melanocyte Stem Cells in Skin Diseases and Their Potential in Cell-Based Therapy. Histology and Histopathology, 37, 937-953.
[5]  Etchevers, H.C., Dupin, E. and Le Douarin, N.M. (2019) The Diverse Neural Crest: From Embryology to Human Pathology. Development, 146, Dev169821.
https://doi.org/10.1242/dev.169821
[6]  Li, A. (2014) The Biology of Melanocyte and Melanocyte Stem Cell. Acta Biochimica et Biophysica Sinica (Shanghai), 46, 255-260.
https://doi.org/10.1093/abbs/gmt145
[7]  O’Sullivan, J., Nicu, C., Picard, M., et al. (2021) The Biology of Human Hair Greying. Biological reviews of the Cambridge Philosophical Society, 96, 107-128.
https://doi.org/10.1111/brv.12648
[8]  Qiu, W., Chuong, C.M. and Lei, M. (2019) Regulation of Melanocyte Stem Cells in the Pigmentation of Skin and Its Appendages: Biological Patterning and Therapeutic Potentials. Experimental Dermatology, 28, 395-405.
https://doi.org/10.1111/exd.13856
[9]  Yang, K., Chen, J., Jiang, W., et al. (2012) Conditional Immortalization Establishes a Repertoire of Mouse Melanocyte Progenitors with Distinct Melanogenic Differentiation Potential. Journal of Investigative Dermatology, 132, 2479-2483.
https://doi.org/10.1038/jid.2012.145
[10]  Nishimura, E.K. (2011) Melanocyte Stem Cells: A Melanocyte Reservoir in Hair Follicles for Hair and Skin Pigmentation. Pigment Cell & Melanoma Research, 24, 401-410.
https://doi.org/10.1111/j.1755-148X.2011.00855.x
[11]  Osawa, M., Egawa, G., Mak, S.S., et al. (2005) Molecular Characterization of Melanocyte Stem Cells in Their Niche. Development, 132, 5589-5599.
https://doi.org/10.1242/dev.02161
[12]  Zhang, B., Ma, S., Rachmin, I., et al. (2020) Hyperactivation of Sympathetic Nerves Drives Depletion of Melanocyte Stem Cells. Nature, 577, 676-681.
https://doi.org/10.1038/s41586-020-1935-3
[13]  Cordero, R. and Casadevall, A. (2020) Melanin. Current Biology, 30, R142-R143.
https://doi.org/10.1016/j.cub.2019.12.042
[14]  Allouche, J., Rachmin, I., Adhikari, K., et al. (2021) NNT Mediates Redox-Dependent Pigmentation via a UVB-and MITF-Independent Mechanism. Cell, 184, 4268-4283.E20.
https://doi.org/10.1016/j.cell.2021.06.022
[15]  Li, H. and Hou, L. (2018) Regulation of Melanocyte Stem Cell Behavior by the Niche Microenvironment. Pigment Cell & Melanoma Research, 31, 556-569.
https://doi.org/10.1111/pcmr.12701
[16]  Yardman-Frank, J.M. and Fisher, D.E. (2021) Skin Pigmentation and Its Control: From Ultraviolet Radiation to Stem Cells. Experimental Dermatology, 30, 560-571.
https://doi.org/10.1111/exd.14260
[17]  Sutton, G., Kelsh, R.N. and Scholpp, S. (2021) Review: The Role of Wnt/β-Catenin Signalling in Neural Crest Development in Zebrafish. Frontiers in Cell and Developmental Biology, 9, Article ID: 782445.
https://doi.org/10.3389/fcell.2021.782445
[18]  Lim, X., Tan, S.H., Yu, K.L., et al. (2016) Axin2 Marks Quiescent Hair Follicle Bulge Stem Cells That Are Maintained by Autocrine Wnt/β-Catenin Signaling. Proceedings of the National Academy of Sciences of the United States of America, 113, E1498-E1505.
https://doi.org/10.1073/pnas.1601599113
[19]  Yamada, T., Akamatsu, H., Hasegawa, S., et al. (2010) Melanocyte Stem Cells Express Receptors for Canonical Wnt-Signaling Pathway on Their Surface. Biochemical and Biophysical Research Communications, 396, 837-842.
https://doi.org/10.1016/j.bbrc.2010.04.167
[20]  Dunn, K.J., Williams, B.O., Li, Y., et al. (2000) Neural Crest-Directed Gene Transfer Demonstrates Wnt1 Role in Melanocyte Expansion and Differentiation during Mouse Development. Proceedings of the National Academy of Sciences of the United States of America, 97, 10050-10055.
https://doi.org/10.1073/pnas.97.18.10050
[21]  Hari, L., Miescher, I., Shakhova, O., et al. (2012) Temporal Control of Neural Crest Lineage Generation by Wnt/β-Catenin Signaling. Development, 139, 2107-2117.
https://doi.org/10.1242/dev.073064
[22]  Cichorek, M., Wachulska, M., Stasiewicz, A., et al. (2013) Skin Melanocytes: Biology and Development. Post?py Dermatologii i Alergologii, 30, 30-41.
https://doi.org/10.5114/pdia.2013.33376
[23]  Dunn, K.J., Brady, M., Ochsenbauer-Jambor, C., et al. (2005) WNT1 and WNT3a Promote Expansion of Melanocytes through Distinct Modes of Action. Pigment Cell Research, 18, 167-180.
https://doi.org/10.1111/j.1600-0749.2005.00226.x
[24]  Guo, H., Yang, K., Deng, F., et al. (2012) Wnt3a Promotes Melanin Synthesis of Mouse Hair Follicle Melanocytes. Biochemical and Biophysical Research Communications, 420, 799-804.
https://doi.org/10.1016/j.bbrc.2012.03.077
[25]  Ye, J., Yang, T., Guo, H., et al. (2013) Wnt10b Promotes Differentiation of Mouse Hair Follicle Melanocytes. International Journal of Medical Sciences, 10, 691-698.
https://doi.org/10.7150/ijms.6170
[26]  Rabbani, P., Takeo, M., Chou, W., et al. (2011) Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell, 145, 941-955.
https://doi.org/10.1016/j.cell.2011.05.004
[27]  Hou, L. and Pavan, W.J. (2008) Transcriptional and Signaling Regulation in Neural Crest Stem Cell-Derived Melanocyte Development: Do All Roads Lead to Mitf. Cell Research, 18, 1163-1176.
https://doi.org/10.1038/cr.2008.303
[28]  Li, H., Fan, L., Zhu, S., et al. (2017) Epilation Induces Hair and Skin Pigmentation through an EDN3/EDNRB-Dependent Regenerative Response of Melanocyte Stem Cells. Scientific Reports, 7, Article No. 7272.
https://doi.org/10.1038/s41598-017-07683-x
[29]  Rezza, A., Wang, Z., Sennett, R., et al. (2016) Signaling Networks among Stem Cell Precursors, Transit-Amplifying Progenitors, and Their Niche in Developing Hair Follicles. Cell Reports, 14, 3001-3018.
https://doi.org/10.1016/j.celrep.2016.02.078
[30]  Takeo, M., Lee, W., Rabbani, P., et al. (2016) EdnrB Governs Regenerative Response of Melanocyte Stem Cells by Crosstalk with Wnt Signaling. Cell Reports, 15, 1291-1302.
https://doi.org/10.1016/j.celrep.2016.04.006
[31]  Endou, M., Aoki, H., Kobayashi, T., et al. (2014) Prevention of Hair Graying by Factors That Promote the Growth and Differentiation of Melanocytes. The Journal of Dermatology, 41, 716-723.
https://doi.org/10.1111/1346-8138.12570
[32]  Yuriguchi, M., Aoki, H., Taguchi, N., et al. (2016) Pigmentation of Regenerated Hairs after Wounding. Journal of Dermatological Science, 84, 80-87.
https://doi.org/10.1016/j.jdermsci.2016.07.004
[33]  Chang, C.Y., Pasolli, H.A., Giannopoulou, E.G., et al. (2013) NFIB Is a Governor of Epithelial-Melanocyte Stem Cell Behaviour in a Shared Niche. Nature, 495, 98-102.
https://doi.org/10.1038/nature11847
[34]  Zeng, X., Lv, H., Jin, Y., et al. (2024) Enhanced Quality of HESC-Derived Melanocytes through Modified Concentration of Endothelin-1. Experimental Dermatology, 33, E15004.
https://doi.org/10.1111/exd.15004
[35]  Yun, C.Y., Roh, E., Kim, S.H., et al. (2020) Stem Cell Factor-Inducible MITF-M Expression in Therapeutics for Acquired Skin Hyperpigmentation. Theranostics, 10, 340-352.
https://doi.org/10.7150/thno.39066
[36]  Cable, J., Jackson, I.J. and Steel, K.P. (1995) Mutations at the W Locus Affect Survival of Neural Crest-Derived Melanocytes in the Mouse. Mechanisms of Development, 50, 139-150.
https://doi.org/10.1016/0925-4773(94)00331-G
[37]  Wehrle-Haller, B. and Weston, J.A. (1995) Soluble and Cell-Bound Forms of Steel Factor Activity Play Distinct Roles in Melanocyte Precursor Dispersal and Survival on the Lateral Neural Crest Migration Pathway. Development, 121, 731-742.
https://doi.org/10.1242/dev.121.3.731
[38]  Hachiya, A., Sriwiriyanont, P., Kobayashi, T., et al. (2009) Stem Cell Factor-KIT Signalling Plays a Pivotal Role in Regulating Pigmentation in Mammalian Hair. The Journal of Pathology, 218, 30-39.
https://doi.org/10.1002/path.2503
[39]  Jeon, S., Kim, N.H., Kim, J.Y., et al. (2009) Stem Cell Factor Induces ERM Proteins Phosphorylation through PI3K Activation to Mediate Melanocyte Proliferation and Migration. Pigment Cell & Melanoma Research, 22, 77-85.
https://doi.org/10.1111/j.1755-148X.2008.00519.x
[40]  Wang, D.G., Xu, X.H., Ma, H.J., et al. (2013) Stem Cell Factor Combined with Matrix Proteins Regulates the Attachment and Migration of Melanocyte Precursors of Human Hair Follicles in Vitro. Biological and Pharmaceutical Bulletin, 36, 1317-1325.
https://doi.org/10.1248/bpb.b13-00172
[41]  Massagué, J. (2008) TGFbeta in Cancer. Cell, 134, 215-230.
https://doi.org/10.1016/j.cell.2008.07.001
[42]  Nishimura, E.K., Suzuki, M., Igras, V., et al. (2010) Key Roles for Transforming Growth Factor Beta in Melanocyte Stem Cell Maintenance. Cell Stem Cell, 6, 130-140.
https://doi.org/10.1016/j.stem.2009.12.010
[43]  Tumbar, T., Guasch, G., Greco, V., et al. (2004) Defining the Epithelial Stem Cell Niche in Skin. Science, 303, 359-363.
https://doi.org/10.1126/science.1092436
[44]  Katkat, E., Demirci, Y., Heger, G., et al. (2023) Canonical Wnt and TGF-β/BMP Signaling Enhance Melanocyte Regeneration but Suppress Invasiveness, Migration, and Proliferation of Melanoma Cells. Frontiers in Cell and Developmental Biology, 11, Article ID: 1297910.
https://doi.org/10.3389/fcell.2023.1297910
[45]  Liu, J., Fukunaga-Kalabis, M., Li, L., et al. (2014) Developmental Pathways Activated in Melanocytes and Melanoma. Archives of Biochemistry and Biophysics, 563, 13-21.
https://doi.org/10.1016/j.abb.2014.07.023
[46]  Moriyama, M., Osawa, M., Mak, S.S., et al. (2006) Notch Signaling via Hes1 Transcription Factor Maintains Survival of Melanoblasts and Melanocyte Stem Cells. Journal of Cell Biology, 173, 333-339.
https://doi.org/10.1083/jcb.200509084
[47]  Kumano, K., Masuda, S., Sata, M., et al. (2008) Both Notch1 and Notch2 Contribute to the Regulation of Melanocyte Homeostasis. Pigment Cell & Melanoma Research, 21, 70-78.
https://doi.org/10.1111/j.1755-148X.2007.00423.x
[48]  Wolf Horrell, E.M., Boulanger, M.C. and D’Orazio, J.A. (2016) Melanocortin 1 Receptor: Structure, Function, and Regulation. Frontiers in Genetics, 7, Article No. 95.
https://doi.org/10.3389/fgene.2016.00095
[49]  Mitra, D., Luo, X., Morgan, A., et al. (2012) An Ultraviolet-Radiation-Independent Pathway to Melanoma Carcinogenesis in the Red Hair/Fair Skin Background. Nature, 491, 449-453.
https://doi.org/10.1038/nature11624
[50]  Chou, W.C., Takeo, M., Rabbani, P., et al. (2013) Direct Migration of Follicular Melanocyte Stem Cells to the Epidermis after Wounding or UVB Irradiation Is Dependent on Mc1r Signaling. Nature Medicine, 19, 924-929.
https://doi.org/10.1038/nm.3194
[51]  Lu, Z., Xie, Y., Huang, H., et al. (2020) Hair Follicle Stem Cells Regulate Retinoid Metabolism to Maintain the Self-Renewal Niche for Melanocyte Stem Cells. Elife, 9, e52712.
https://doi.org/10.7554/eLife.52712
[52]  Tanimura, S., Tadokoro, Y., Inomata, K., et al. (2011) Hair Follicle Stem Cells Provide a Functional Niche for Melanocyte Stem Cells. Cell Stem Cell, 8, 177-187.
https://doi.org/10.1016/j.stem.2010.11.029
[53]  Rendl, M., Lewis, L. and Fuchs, E. (2005) Molecular Dissection of Mesenchymal-Epithelial Interactions in the Hair Follicle. PLOS Biology, 3, E331.
https://doi.org/10.1371/journal.pbio.0030331
[54]  Aoki, H., Hara, A., Motohashi, T., et al. (2011) Protective Effect of Kit Signaling for Melanocyte Stem Cells against Radiation-Induced Genotoxic Stress. Journal of Investigative Dermatology, 131, 1906-1915.
https://doi.org/10.1038/jid.2011.148
[55]  Hoath, S.B. and Leahy, D.G. (2003) The Organization of Human Epidermis: Functional Epidermal Units and Phi Proportionality. Journal of Investigative Dermatology, 121, 1440-1446.
https://doi.org/10.1046/j.1523-1747.2003.12606.x
[56]  Osawa, M. (2008) StemBook.
[57]  Nishimura, E.K., Jordan, S.A., Oshima, H., et al. (2002) Dominant Role of the Niche in Melanocyte Stem-Cell Fate Determination. Nature, 416, 854-860.
https://doi.org/10.1038/416854a
[58]  Ma, H.J., Zhu, W.Y., Wang, D.G., et al. (2006) Endothelin-1 Combined with Extracellular Matrix Proteins Promotes the Adhesion and Chemotaxis of Amelanotic Melanocytes from Human Hair Follicles in Vitro. Cell Biology International, 30, 999-1006.
https://doi.org/10.1016/j.cellbi.2006.07.007
[59]  Lei, T.C. and Hearing, V.J. (2020) Deciphering Skin Re-Pigmentation Patterns in Vitiligo: An Update on the Cellular and Molecular Events Involved. Chinese Medical Journal (England), 133, 1231-1238.
https://doi.org/10.1097/CM9.0000000000000794
[60]  Frisoli, M.L., Essien, K. and Harris, J.E. (2020) Vitiligo: Mechanisms of Pathogenesis and Treatment. Annual Review of Immunology, 38, 621-648.
https://doi.org/10.1146/annurev-immunol-100919-023531
[61]  Xu, Z., Chen, D., Hu, Y., et al. (2022) Anatomically Distinct Fibroblast Subsets Determine Skin Autoimmune Patterns. Nature, 601, 118-124.
https://doi.org/10.1038/s41586-021-04221-8
[62]  Meyer, K.C., Klatte, J.E., Dinh, H.V., et al. (2008) Evidence That the Bulge Region Is a Site of Relative Immune Privilege in Human Hair Follicles. British Journal of Dermatology, 159, 1077-1085.
https://doi.org/10.1111/j.1365-2133.2008.08818.x
[63]  Yang, Y.S., Cho, H.R., Ryou, J.H., et al. (2010) Clinical Study of Repigmentation Patterns with either Narrow-Band Ultraviolet B (NBUVB) or 308 Nm Excimer Laser Treatment in Korean Vitiligo Patients. International Journal of Dermatology, 49, 317-323.
https://doi.org/10.1111/j.1365-4632.2009.04332.x
[64]  Birlea, S.A., Costin, G.E., Roop, D.R., et al. (2017) Trends in Regenerative Medicine: Repigmentation in Vitiligo through Melanocyte Stem Cell Mobilization. Medicinal Research Reviews, 37, 907-935.
https://doi.org/10.1002/med.21426
[65]  Yamada, T., Hasegawa, S., Inoue, Y., et al. (2013) Wnt/β-Catenin and Kit Signaling Sequentially Regulate Melanocyte Stem Cell Differentiation in UVB-Induced Epidermal Pigmentation. Journal of Investigative Dermatology, 133, 2753-2762.
https://doi.org/10.1038/jid.2013.235

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413