全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物光合途径的研究进展
Research Progress of Plant Photosynthetic Pathways

DOI: 10.12677/br.2024.133033, PP. 315-321

Keywords: C3途径、C4途径、C2途径、光合途径进化
C3 Pathway
, C4 Pathway, C2 Pathway, Photosynthetic Pathway Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物光合作用碳同化途径包括C3途径、C4途径、CAM途径和C2途径。相比C3途径,C4途径和CAM途径被认为是一种高光效途径,C2途径是光合作用从C3途径进化到C4途径的过渡类型,在光合途径研究中有重要作用。本文主要概述了植物光合作用碳同化途径的类型,总结了光合途径的复杂多样性及进化相关的研究进展,以期为植物光合途径改良研究提供参考。
The C3 pathway, C4 pathway, CAM pathway, and C2 pathway are all carbon absorption mechanisms in plants. The C4 and CAM pathways are regarded as high photosynthetic efficiency pathways in comparison to the C3 route, while the C2 pathway is the transition type of photosynthesis evolution from the C3 pathway to the C4 pathway, which plays an essential part in photosynthetic pathway research. This paper primarily highlights the different types of carbon absorption pathways in plant photosynthesis, as well as the complicated diversity and evolution of photosynthetic pathways research advances, in order to serve as a reference for plant photosynthetic pathway improvement.

References

[1]  李合生. 现代植物生理学[M]. 第二版. 高等教育出版社, 2005: 144-191.
[2]  Hibberd, J.M. and Covshoff, S. (2010) The Regulation of Gene Expression Required for C4 Photosynthesis. Annual Review of Plant Biology, 61, 181-207.
https://doi.org/10.1146/annurev-arplant-042809-112238
[3]  Evans, J.R. (2013) Improving Photosynthesis. Plant Physiology, 162, 1780-1793.
https://doi.org/10.1104/pp.113.219006
[4]  Rabinowitch, E. (1969) Photosynthesis. John Wiley & Sons, New York.
[5]  Ehleringer, J.R., Cerling, T.E. and Helliker, B.R. (1997) C4 Photosynthesis, Atmospheric CO2, and Climate. Oecologia, 112, 285-299.
https://doi.org/10.1007/s004420050311
[6]  Winter, K. and Holtum, J.A.M. (2014) Facultative Crassulacean Acid Metabolism (CAM) Plants: Powerful Tools for Unravelling the Functional Elements of CAM Photosynthesis. Journal of Experimental Botany, 65, 3425-3441.
https://doi.org/10.1093/jxb/eru063
[7]  Kennedy, R.A. and Laetsch, W.M. (1974) Plant Species Intermediate for C3, C4 Photosynthesis. Science, 184, 1087-1089.
https://doi.org/10.1126/science.184.4141.1087
[8]  Sage, R.F., Christin, P.A. and Edwards, E.J. (2011) The C4 Plant Lineages of Planet Earth. Journal of Experimental Botany, 62, 3155-3169.
https://doi.org/10.1093/jxb/err048
[9]  Khoshravesh, R., Hossein, A., Sage, T.L., et al. (2012) Phylogeny and Photosynthetic Pathway Distribution in Anticharis Endl (Scrophulariaceae). Journal of Experimental Botany, 63, 5645-5658.
https://doi.org/10.1093/jxb/ers218
[10]  Brown, R.H. and Hattersley, P.W. (1989) Leaf Anatomy of C3-C4 Species as Related to Evolution of C4 Photosynthesis. Plant Physiology, 91, 1543-1550.
https://doi.org/10.1104/pp.91.4.1543
[11]  Sage, R.F., Khoshravesh, R. and Sage, T.L. (2014) From Proto-Kranz to C4 Kranz: Building the Bridge to C4 Photosynthesis. Journal of Experimental Botany, 65, 3341-3356.
https://doi.org/10.1093/jxb/eru180
[12]  Hunt, S., Smith, A.M. and Woolhouse, H.W. (1987) Evidence for a Light-Dependent System for Reassimilation of Photorespiratory CO2, Which Does Not Include a C4 Cycle, in the C3-C4 Intermediate Species Moricandia arvensis. Planta, 171, 227-234.
https://doi.org/10.1007/BF00391098
[13]  Rawsthorne, S., Hylton, C.M., Smith, A.M., et al. (1988) Photorespiratory Metabolism and Immunogold Localization of Photorespiratory Enzymes in Leaves of C3 and C3-C4 Intermediate Species of Moricandia. Planta, 173, 298-308.
https://doi.org/10.1007/BF00401016
[14]  Voznesenskaya, E.V., Koteyeva, N.K., Chuong, S.D.X., et al. (2007) Physiological, Anatomical and Biochemical Characterisation of Photosynthetic Types in Genus Cleome (Cleomaceae). Functional Plant Biology, 34, 247-267.
https://doi.org/10.1071/FP06287
[15]  Voznesenskaya, E.V., Franceschi, V.R., Kiirats, O., et al. (2001) Kranz Anatomy Is Not Essential for Terrestrial C4 Plant Photosynthesis. Nature, 414, 543-546.
https://doi.org/10.1038/35107073
[16]  Raghavendra, A.S., Rajendrudu, G. and Das, V.S.R. (1978) Simultaneous Occurrence of C3 and C4 Photosyntheses in Relation to Leaf Position in Mollugo nudicaulis. Nature, 273, 143-144.
https://doi.org/10.1038/273143a0
[17]  Hibberd, J.M. and Quick, W.P. (2002) Characteristics of C4 Photosynthesis in Stems and Petioles of C3 Flowering Plants. Nature, 415, 451-454.
https://doi.org/10.1038/415451a
[18]  Imaizumi, N., Ku, M.S.B., Ishihara, K., et al. (1997) Characterization of the Gene for Pyruvate, Orthophosphate Dikinase from Rice, a C3 Plant, and a Comparison of Structure and Expression between C3 and C4 Genes for This Protein. Plant Molecular Biology, 34, 701-716.
[19]  Ueno, O., Samejima, M., Muto, S., et al. (1988) Photosynthetic Characteristics of an Amphibious Plant, Eleocharis vivipara: Expression of C4 and C3 Modes in Contrasting Environments. Proceedings of the National Academy of Sciences of the United States of America, 85, 6733-6737.
https://doi.org/10.1073/pnas.85.18.6733
[20]  Ueno, O. (1998) Induction of Kranz Anatomy and C4-Like Biochemical Characteristics in a Submerged Amphibious Plant by Abscisic Acid. The Plant Cell, 10, 571-583.
https://doi.org/10.1105/tpc.10.4.571
[21]  Monson, R.K., Schuster, W.S. and Ku, M.S.B. (1987) Photosynthesis in Flaveria brownii AM Powell A C4-Like C3-C4 Intermediate. Plant Physiology, 85, 1063-1067.
https://doi.org/10.1104/pp.85.4.1063
[22]  管祺杰. 兼性CAM植物冰晶日中花在盐胁迫下从C3向CAM转变的系统生物学研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020.
https://doi.org/10.27461/d.cnki.gzjdx.2020.001388
[23]  Christin, P.A. and Osborne, C.P. (2014) The Evolutionary Ecology of C4 Plants. New Phytologist, 204, 765-781.
https://doi.org/10.1111/nph.13033
[24]  Sage, R.F. and Stata, M. (2015) Photosynthetic Diversity Meets Biodiversity: The C 4 Plant Example. Journal of Plant Physiology, 172, 104-119.
https://doi.org/10.1016/j.jplph.2014.07.024
[25]  Muhaidat, R., Sage, T.L., Frohlich, M.W., et al. (2011) Characterization of C3-C4 Intermediate Species in the Genus Heliotropium L. (Boraginaceae): Anatomy, Ultrastructure and Enzyme Activity. Plant, Cell & Environment, 34, 1723-1736.
https://doi.org/10.1111/j.1365-3040.2011.02367.x
[26]  Brown, W.V. (1975) Variations in Anatomy, Associations, and Origins of Kranz Tissue. American Journal of Botany, 62, 395-402.
https://doi.org/10.1002/j.1537-2197.1975.tb14062.x
[27]  Griffiths, H., Weller, G., Toy, L.F.M., et al. (2013) You’re So Vein: Bundle Sheath Physiology, Phylogeny and Evolution in C3 and C4 Plants. Plant, Cell & Environment, 36, 249-261.
https://doi.org/10.1111/j.1365-3040.2012.02585.x
[28]  Monson, R.K. (2003) Gene Duplication, Neofunctionalization, and the Evolution of C4 Photosynthesis. International Journal of Plant Sciences, 164, S43-S54.
https://doi.org/10.1086/368400
[29]  Reizer, J., Reizer, A. and Saier Jr., M.H. (1995) Novel Phosphotransferase System Genes Revealed by Bacterial Genome Analysis—A Gene Cluster Encoding a Unique Enzyme I and the proteins of a Fructose-Like Permease System. Microbiology, 141, 961-971.
https://doi.org/10.1099/13500872-141-4-961
[30]  Rosche, E. and Westhoff, P. (1995) Genomic Structure and Expression of the Pyruvate, Orthophosphate Dikinase Gene of the Dicotyledonous C4 Plant Flaveria trinervia (Asteraceae). Plant Molecular Biology, 29, 663-678.
https://doi.org/10.1007/BF00041157
[31]  Aubry, S., Brown, N.J. and Hibberd, J.M. (2011) The Role of Proteins in C3 Plants Prior to Their Recruitment into the C4 Pathway. Journal of Experimental Botany, 62, 3049-3059.
https://doi.org/10.1093/jxb/err012
[32]  Sinha, N.R. and Kellogg, E.A. (1996) Parallelism and Diversity in Multiple Origins of C4 Photosynthesis in the Grass Family. American Journal of Botany, 83, 1458-1470.
https://doi.org/10.1002/j.1537-2197.1996.tb13940.x
[33]  Christin, P.A., Besnard, G., Samaritani, E., et al. (2008) Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses. Current Biology, 18, 37-43.
https://doi.org/10.1016/j.cub.2007.11.058
[34]  Ludwig, M. (2013) Evolution of the C4 Photosynthetic Pathway: Events at the Cellular and Molecular Levels. Photosynthesis Research, 117, 147-161.
https://doi.org/10.1007/s11120-013-9853-y
[35]  Langdale, J.A. (2011) C4 Cycles: Past, Present, and Future Research on C4 Photosynthesis. The Plant Cell, 23, 3879-3892.
https://doi.org/10.1105/tpc.111.092098
[36]  Hattersley, P.W. (1983) The Distribution of C3 and C4 Grasses in Australia in Relation to Climate. Oecologia, 57, 113-128.
https://doi.org/10.1007/BF00379569
[37]  Brooks, A. and Farquhar, G.D. (1985) Effect of Temperature on the CO2/O2 Specificity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and the Rate of Respiration in the Light. Planta, 165, 397-406.
https://doi.org/10.1007/BF00392238
[38]  Sage, R.F. (2004) The Evolution of C4 Photosynthesis. New Phytologist, 161, 341-370.
https://doi.org/10.1111/j.1469-8137.2004.00974.x
[39]  Schulze, E.D. and Hall, A.E. (1982) Stomatal Responses, Water Loss and CO2 Assimilation Rates of Plants in Contrasting Environments. In: Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H., Eds., Physiological Plant Ecology II, Springer, Berlin, Heidelberg, 181-230.
https://doi.org/10.1007/978-3-642-68150-9_8
[40]  Sage, R.F. (2005) Atmospheric CO2, Environmental Stress, and the Evolution of C4 Photosynthesis. In: Baldwin, I.T., Caldwell, M.M., Heldmaier, G., Jackson, R.B., Lange, O.L., Mooney, H.A., Schulze, E.-D., et al., Eds., A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems, Springer, New York, 185-213.
https://doi.org/10.1007/0-387-27048-5_9
[41]  Keeley, J.E. and Rundel, P.W. (2003) Evolution of CAM and C4 Carbon-Concentrating Mechanisms. International Journal of Plant Sciences, 164, S55-S77.
https://doi.org/10.1086/374192

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413