全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ANSYS的称重传感器弹性体结构参数优化
Optimization of Elastomer Structure Parameters of Load Cell Based on ANSYS

DOI: 10.12677/jsta.2024.123042, PP. 391-398

Keywords: 称重传感器,有限元分析,结构参数优化,固有频率
Weighing Sensor
, Finite Element Analysis, Structural Parameter Optimization, Natural Frequency

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提升称重传感器的动态响应能力,本文通过结构参数优化仿真调整现有模型关键尺寸,增强其动态性能。首先,建立弹性体的数学模型,通过Matlab仿真其传递函数,研究固有频率与动态响应之间的关系。随后,根据实际工况,完成了弹性体的结构设计,利用ANSYS软件建立了仿真模型,通过静力学和模态仿真获得最大等效应变值和二阶固有频率,为优化设计提供初始方案数据。进一步,利用ANSYS优化设计模块对仿真模型进行了结构参数优化,通过仿真响应曲面分析输入参数对优化目标的影响,并确定了最佳优化方案。仿真优化结果表明:与初始方案相比,优化后的弹性体固有频率提高了1.82%,增强了传感器的动态响应能力和稳定性。
In order to improve the dynamic response ability of the load cell, this paper adjusts the key dimensions of the existing model through structural parameter optimization simulation to enhance its dynamic performance. Firstly, the mathematical model of elastic body is established, and its transfer function is simulated by Matlab to study the relationship between natural frequency and dynamic response. Then, according to the actual working conditions, the structural design of the elastomer is completed, the simulation model is established by ANSYS software, and the maximum equivalent strain value and second-order natural frequency are obtained by statics and modal simulation, which provides initial scheme data for optimal design. Furthermore, the structural parameters of the simulation model are optimized by ANSYS optimization design module, and the influence of input parameters on the optimization target is analyzed by simulation response surface, and the best optimization scheme is determined. The simulation results show that the natural frequency of the optimized elastomer is increased by 1.82% compared with the original scheme, and the dynamic response capability of the sensor is enhanced.

References

[1]  张炜. 电子皮带秤称重传感器灵敏度对散货计量精度的影响[J]. 衡器, 2024, 53(1): 11-15.
[2]  夏睿, 徐玮, 刘雷, 等. 电阻应变式传感器在下肢牵引手术中的应用[J]. 中国现代医学杂志, 2023, 33(15): 32-37.
[3]  郑朝阳. 一种机器人腕力传感器弹性体结构设计与力学性能分析[J]. 仪表技术与传感器, 2017(11): 14-16.
[4]  路峻岭, 田文杰, 张伟, 等. 压电谐振式力传感器响应时间的研究[J]. 仪表技术与传感器, 2005(12): 49-51.
[5]  杨宇新, 揣荣岩, 张冰, 等. 高固有频率压阻加速度敏感芯片的结构与特性分析[J]. 仪表技术与传感器, 2022(3): 18-22.
[6]  肖峰, 彭斌, 张万里. 三角剪切型压电加速度传感器固有频率计算及优化[J]. 仪表技术与传感器, 2023(4): 11-14.
[7]  吕浩然, 赵印明, 王敏宁, 等. 四柱式力传感器固有频率提升研究[J]. 计测技术, 2021, 41(6): 48-54.
[8]  崔宏敏, 陈宝成, 丁钟凯, 等. 压力传感器结构参数识别及优化方法[J]. 仪器仪表学报, 2016, 37(12): 2805-2812.
[9]  吴四清. 基于MATLAB的二阶系统仿真与分析[J]. 咸宁学院学报, 2009, 29(3): 79-80.
[10]  冯强, 仲梁维, 李磊. ANSYS Workbench仿真平台在支架优化设计中的应用[J]. 软件导刊, 2017, 16(11): 172-175.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413