全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Some Topological Properties of Normed Boolean Algebras

DOI: 10.4236/apm.2024.145021, PP. 367-387

Keywords: Compact, Locally Compact, Polish Space, Separable

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper concerns the compactness and separability properties of the normed Boolean algebras (N.B.A.) with respect to topology generated by a distance equal to the square root of a measure of symmetric difference between two elements. The motivation arises from studying random elements talking values in N.B.A. Those topological properties are important assumptions that enable us to avoid possible difficulties when generalising concepts of random variable convergence, the definition of conditional law and others. For each N.B.A., there exists a finite measure space ( E,,μ ) such that the N.B.A. is isomorphic to ( ˜ , μ ˜ ) resulting from the factorisation of initial σ-algebra by the ideal of negligible sets. We focus on topological properties ( ˜ , μ ˜ ) in general setting when μ can be an infinite measure. In case when μ is infinite, we also consider properties of ˜

References

[1]  Materon, G. (1975) Random Sets and Integral Geometry. John Wiley & Sons, New York.
[2]  Molchanov, I. (2013) Theory of Random Sets. Springer-Verlag, London.
[3]  Gotovacogaš, V., Helisová, K., Klebanov, L.B., Staneěk, J. and Volchenkova, I.V. (2023) A New Definition of Radom Set. Glasnik Matematički, 58, 135-154.
https://doi.org/10.3336/gm.58.1.10
[4]  Vladimirov, D.A. (2002) Boolean Algebras in Analysis. Springer, Science-Business Media, Dordrecht.
https://doi.org/10.1007/978-94-017-0936-1
[5]  Whitt, W. (2006) Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer-Verlag, New York.
[6]  Crauel, H. (2019) Random Probability Measures on Polish Spaces. CRC Press, Boca Raton.
[7]  Bogachev, V.I. (2018) Weak Convergence of Measures, Mathematical Surveys and Monographs. Vol. 234, American Mathematical Society, Providence.
https://doi.org/10.1090/surv/234
[8]  Cohn, D.L. (2013) Measure Theory. Springer, New York.
https://doi.org/10.1007/978-1-4614-6956-8
[9]  Zorič, V.A. (1965) Mathematical Analysis. Krishna Prakashan Media, Meerut.
[10]  Chilin, V.I. and Rakhimov, B.A. (2012) Criteria of Compactness in Lp Spaces. International Journal of Modern Physics: Conference Series, 9, 520-528.
https://doi.org/10.1142/S2010194512005612
[11]  Dunford, N. and Schwartz, J.T. (1988) Linear Operators, Part 1: General Theory. Wiley-Interscience, New York.
[12]  Manetti, M. (2015) Topology. Springer, Milano.
https://doi.org/10.1007/978-3-319-16958-3
[13]  Willard, S. (2012). General Topology. Dover Publications, Mineola.
[14]  Igari, S. (2000) Real Analysis: With an Introduction to Wavelet Theory. Elsevier Academic Press, Burlington.
[15]  Klenke, A. (2008) Probability Theory: A Comprehensive Course. Springer, Berlin.
[16]  Chung, K.L. (1974) A Course in Probability Theory. Academic Press, Cambridge.
[17]  Aliprantis, C.D. and Border, K.C. (2007) Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer-Verlag, Berlin.
[18]  Dudley, R.M. (1988) Real Analysis and Probability. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511755347
[19]  Whitesitt, J.E. (2012) Boolean Algebra and Its Applications. Courier Corporation, Inc., Mineola.
[20]  Yeh, J. (2006) Real Analysis: Theory of Measure and Integration. World Scientific Publishing Co. Pte. Ltd., Singapore.
https://doi.org/10.1142/6023
[21]  Vakil, N. (2011) Real Analysis through Modern Infinitesimals. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511740305

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133