全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非局域超导量子谐振器的贝尔态制备
Bell State Generation Based on Non-Local Superconducting Quantum Resonators

DOI: 10.12677/mp.2024.143013, PP. 110-117

Keywords: 腔量子电动力学,量子纠缠,量子计算
Cavity Quantum Electrodynamics
, Quantum Entanglement, Quantum Computation

Full-Text   Cite this paper   Add to My Lib

Abstract:

量子信息是量子物理和信息科学相结合的新型交叉学科,超导量子谐振器因其可被灵活设计、存储和引导微波光子以及拥有高品质因子等特点成为一个很好的量子信息处理平台。本文研究了基于非局域超导谐振器的全共振贝尔纠缠态的产生过程。使用的系统由一个长超导传输线所连接的两个非局域一维超导谐振器组成,这两个非局域谐振器又分别与两个承载信息的超导谐振器耦合。在本方案中,传输线不会被布局微波光子,从而可以抵抗长传输线的光子损失带来的影响。这也使得长传输线可以被设计的更为复杂以连接更多的非局域超导谐振器达成基于超导谐振器的大规模分布式量子计算。
Quantum information is a new interdisciplinary field that combines quantum physics and information science. Superconducting quantum resonators have become a good platform for quantum information processing due to their flexible design, storage, and guidance of microwave photons, as well as their high quality factors. This article investigates the generation process of fully resonant Bell entangled states based on non-local superconducting resonators. The system used consists of two non-local one-dimensional superconducting resonators connected by a long superconducting transmission line, which are coupled to two superconducting resonators carrying information, respectively. In this scheme, the transmission line will not be laid out with microwave photons, so it can resist the impact of photon loss caused by long transmission lines. This also makes long transmission lines more complex to connect more non local superconducting resonators for large-scale distributed quantum computing based on superconducting resonators.

References

[1]  Nilsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University, Cambridge.
[2]  Knill, E., Laflamme, R. and Milburn, G.J. (2001) A Scheme for Efficient Quantum Computation with Linear Optics. Nature, 409, 46-52.
https://doi.org/10.1038/35051009
[3]  O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C. and Branning, D. (2003) Demonstration of an All-Optical Quantum Controlled-NOT Gate. Nature, 426, 264-267.
https://doi.org/10.1038/nature02054
[4]  Wei, H.R. and Deng, F.G. (2013) Scalable Photonic Quantum Computing Assisted by Quantum-Dot Spin in Doublesided Optical Microcavity. Optics Express, 21, 17671-17685.
https://doi.org/10.1364/OE.21.017671
[5]  Jones, J.A., Mosca, M. and Hansen, R.H. (1998) Implementation of a Quantum Search Algorithmon a Quantum Computer. Nature, 393, 344-346.
https://doi.org/10.1038/30687
[6]  Long, G.L. and Xiao, L. (2003) Experimental Realization of a Fetching Algorithm in a 7-Qubit NMR Spin Liouville Space Computer. The Journal of Chemical Physics, 119, 8473-8481.
https://doi.org/10.1063/1.1611177
[7]  Feng, G.R., Xu, G.F. and Long, G.L. (2013) Experimental Realization of Non-Adiabatic Holonomic Quantum Computation. Physical Review Letters, 110, Article ID: 190501.
https://doi.org/10.1103/PhysRevLett.110.190501
[8]  Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.G., S?rensen, A.S., Hemmer, P.R., Zibrov, A.S. and Lukin, M.D. (2010) Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit. Nature, 466, 730-734.
https://doi.org/10.1038/nature09256
[9]  Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M. and Du, J.F. (2010) One-Step Implementationofmulti Qubit Conditional Phase Gating with Nitrogen-Vacancy Centers Coupled to Ahigh-Qsilica Microsphere Cavity. Applied Physics Letters, 96, Article ID: 241113.
https://doi.org/10.1063/1.3455891
[10]  Wei, H.R. and Long, G.L. (2015) Universal Photonic Quantum Gates Assisted by Ancilladiamond Nitrogen-Vacancy Centers Coupled to Resonators. Physical Review A, 91, Article ID: 032324.
https://doi.org/10.1103/PhysRevA.91.032324
[11]  Wei, H.R. and Deng, F.G. (2013) Compact Quantum Gates on Electron-Spin Qubits Assisted by Diamond Nitrogen-Vacancy Centers Inside Cavities. Physical Review A, 88, Article ID: 042323
https://doi.org/10.1103/PhysRevA.88.042323
[12]  Han, X., Guo, Q., Zhu, A.D., Zhang, S. and Wang, H.F. (2017) Effective W-State Fusion Strategies in Nitrogen Vacancy Centers via Coupling to Microtoroidal Resonators. Optics Express, 25, 17701-17712.
https://doi.org/10.1364/OE.25.017701
[13]  Scully, M.O. and Zubairy, M.S. (1997) Quantum Optics. Cambridge University, Cambridge.
https://doi.org/10.1017/CBO9780511813993
[14]  Blais, A., Huang, R.S., Wallraff, A., Girvin, S.M. and Schoelkopf, R.J. (2004) Cavity Quantumelectrodynamics for Superconducting Electrical Circuits: An Architecture for Quantumcomputation. Physical Review A, 69, Article ID: 062320.
https://doi.org/10.1103/PhysRevA.69.062320
[15]  Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M. and Schoelkopf, R.J. (2004) Strong Coupling of a Single Photon to a Superconducting Qubit Using Circuit Quantum Electrodynamics. Nature, 431, 162-167.
https://doi.org/10.1038/nature02851
[16]  Chang, J.B., Vissers, M.R., Córcoles, A.D., Sandberg, M., et al. (2013) Improved Superconducting Qubit Coherence Using Titanium Nitride. Applied Physics Letters, 103, Article ID: 012602.
https://doi.org/10.1063/1.4813269
[17]  Chow, J.M., Gambetta, J.M., Magesan, E., Abraham, D.W., et al. (2014) Implementing a Strad of a Scalable Fault-Tolerant Quantum Computing Fabric. Nature Communications, 5, Article No. 4015.
https://doi.org/10.1038/ncomms5015
[18]  Kelly, J., Barends, R., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., et al. (2015) Sate Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit. Nature, 519, 66-69.
https://doi.org/10.1038/nature14270
[19]  Megrant, A., Neill, C., Barends, R., Chiaro, B., et al. (2012) Planar Superconducting Resonators with Internal Quality Factor above One Million. Applied Physics Letters, 100, Article ID: 113510.
https://doi.org/10.1063/1.3693409
[20]  Wang, H., Mariantoni, M., Bialczak, R.C., Lenander, M., et al. (2011) Deterministic Entanglement of Photons in Two Superconducting Microwave Resonators. Physical Review Letters, 106, Article ID: 060401.
https://doi.org/10.1103/PhysRevLett.106.060401
[21]  Adhikari, P., Hafezi, M. and Taylor, J.M. (2013) Nonlinear Optics Quantum Computing with Circuit QED. Physical Review Letters, 110, Article ID: 060503.
https://doi.org/10.1103/PhysRevLett.110.060503
[22]  DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., et al. (2009) Demonstration of Two Qubit Algorithms with a Super-Conducting Quantum Processor. Nature, 460, 240-244.
https://doi.org/10.1038/nature08121
[23]  Haack, G., Helmer, F., Mariantoni, M., Marquardt, F. and Solano, E. (2010) Resonant Quantum Gates in Circuit Quantum Electrodynamics. Physical Review B, 82, Article ID: 024514.
https://doi.org/10.1103/PhysRevB.82.024514
[24]  Strauch, F.W. (2011) Quantum Logic Gates for Superconducting Resonator Qubits. Physical Review A, 84, Article ID: 052313.
https://doi.org/10.1103/PhysRevA.84.052313
[25]  Hua, M., Tao, M.J. and Deng, F.G. (2015) Fast Universal Quantum Gates on Microwave Photons with All-Resonance Operations in Circuit QED. Scientific Reports, 5, Article No. 9274
https://doi.org/10.1038/srep09274
[26]  Xue, Z.Y., Zhou, J. and Wang, Z.D. (2015) Universal Holonomic Quantum Gates in Decoherence Free Subspace on Superconducting Circuits. Physical Review A, 92, Article ID: 022320.
https://doi.org/10.1103/PhysRevA.92.022320
[27]  Xue, Z.Y., Gu, F.L., Hong, Z.P., Yang, Z.H., Zhang, D.W., Hu, Y. and You, J.Q. (2017) Nonadiabatic Holonomic Quantum Computation with Dressed-State Qubits. Physical Review Applied, 7, Article ID: 054022.
https://doi.org/10.1103/PhysRevApplied.7.054022
[28]  Steffen, M., Ansmann, M., Bialczak, R.C., et al. (2006) Measurement of the Entanglement of Two Superconducting Qubits via State Tomography. Science, 313, 1423-1425.
https://doi.org/10.1126/science.1130886
[29]  Cao, Y., Huo, W.Y., Ai, Q. and Long, G.L. (2011) Theory of Degenerate Three-Wave Mixing Using Circuit QED in Solid-State Circuits. Physical Review A, 84, Article ID: 053846.
https://doi.org/10.1103/PhysRevA.84.053846
[30]  Leghtas, Z., Vool, U., Shankar, S., Hatridge, M., Girvin, S.M., Devoret, M.H. and Mirrahimi, M. (2013) Stabilizing a Bell State of Two Superconducting Qubits by Dissipation Engineering. Physical Review A, 88, Article ID: 023849.
https://doi.org/10.1103/PhysRevA.88.023849
[31]  Strauch, F.W. (2012) All-Resonant Control of Superconducting Resonators. Physical Review Letter, 109, Article ID: 210501.
https://doi.org/10.1103/PhysRevLett.109.210501
[32]  Strauch, F.W., Onyango, D., Jacobs, K. and Simmonds, R.W. (2012) Entangled-State Synthesis for Superconducting Resonators. Physical Review A, 85, Article ID: 022335.
https://doi.org/10.1103/PhysRevA.85.022335
[33]  Wang, W., Hu, L., Xu, Y., Liu, K., Ma, Y., Zheng, S.B., et al. (2017) Converting Quasi-Classical States into Arbitrary Fock State Super-Positions in a Superconducting Circuit. Physical Review Letter, 118, Article ID: 223604.
https://doi.org/10.1103/PhysRevLett.118.223604
[34]  Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Majer, J., Devoret, M.H., Girvin, S.M, Schoelkopf, R.J. (2005) Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout. Physical Review Letter, 95, Article ID: 060501.
https://doi.org/10.1103/PhysRevLett.95.060501
[35]  Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., et al. (2010) Quantum Non-Demolition Detection of Single Microwave Photons in a Circuit. Nature Physics, 6, 663-667.
https://doi.org/10.1038/nphys1710
[36]  Feng, W., Wang, P.Y., Ding, X.M., Xu, L.T. and Li, X.Q. (2011) Generating and Stabilizingthe Greenberge-Horne-Zeilinger State in Circuit QED: Joint Measurement, Zeno Effect, and Feedback. Physical Review A, 83, Article ID: 042313.
https://doi.org/10.1103/PhysRevA.83.042313
[37]  Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., et al. (2007) Coupling Superconducting Qubits via a Cavity Bus. Nature, 449, 443-447.
https://doi.org/10.1038/nature06184
[38]  Hua, M., Tao, M.J. and Deng, F.G. (2016) Quantum State Transfer and Controlled-Phase Gate on One-Dimensional Superconducting Resonators Assisted by a Quantum Bus. Scientific Reports, 6, Article No. 22037.
https://doi.org/10.1038/srep22037
[39]  Wu, C.W., Gao, M., Li, H.Y., Deng, Z.J., Dai, H.Y., Chen, P.X. and Li, C.Z. (2012) Scalable One-Way Quantum Computer Using On-Chip Resonator Qubits. Physical Review A, 85, Article ID: 042301.
https://doi.org/10.1103/PhysRevA.85.042301
[40]  Yang, C.P., Su, Q.P. and Han, S.Y. (2012) Generation of Greenberger-Horne-Zeilinger Entangled States of Photons in Multiple Cavities via a Superconducting Qutritor Anatomthrough Resonant Interaction. Physical Review A, 86, Article ID: 022329.
https://doi.org/10.1103/PhysRevA.86.022329
[41]  Yang, C.P., Su, Q.P., Zheng, S.B. and Nori, F. (2016) Crosstalk-Insensitive Method for Simultaneously Coupling Multiple Pairs of Resonators. Physical Review A, 93, Article ID: 042307.
https://doi.org/10.1103/PhysRevA.93.042307
[42]  Galiautdinov, A., Korotkov, A.N. and Martinis, J.M. (2012) Resonator-Zero-Qubit Architecture for Superconducting Qubits. Physical Review A, 85, Article ID: 042321.
https://doi.org/10.1103/PhysRevA.85.042321
[43]  Ciracf, J.I., Ekert, A.K., Huelga, S.F. and Macchiavello, C. (1999) Unconditional Preparation of Entanglement between Atoms in Cascaded Optical Cavities. Physical Review A, 59, 49.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413