全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

病毒免疫学研究进展
Progress in Viral Immunology

DOI: 10.12677/is.2024.62002, PP. 15-30

Keywords: 病毒,免疫反应,疫苗,逃逸
Virus
, Immune Response, Vaccines, Escape

Full-Text   Cite this paper   Add to My Lib

Abstract:

病毒免疫学研究在当下占据着重要地位,对宿主有不可或缺的影响,病毒的结构简单,仅由蛋白质和核酸组成,但是当下大量病原体都属于病毒,大致可以将病毒分成DNA病毒和RNA病毒两类,他们会通过七个阶段去复制赖以生存,经过宿主细胞的识别,激发宿主的先天性和适应性免疫反应对抗病毒,然而,病毒可能被识别后清除或者会通过逃逸机制躲避宿主的免疫系统攻击,变异后的病毒则会有更强的逃逸功能。目前,疫苗的研究带来了显著发展,积极解决疫苗研发的挑战,同时引用创新的治疗方法控制病毒。通过研究病毒的变异和逃逸机制,提供了未来的研究方向和重点,为癌症、传染病等疾病的预防和治疗提供新思路。通过病毒免疫学的研究,为疫苗开发、保障生物安全、开发新技术都提供了明确的方向。
Viral immunology research occupies an important position in the present and has an indispensable influence on the host. The structure of the virus is simple, only consisting of protein and nucleic acid, but now a large number of pathogens belong to the virus. The virus can be roughly divided into DNA viruses and RNA viruses, which will through seven stages to replicate, after the host cell identification, stimulate host innate and adaptive immune response to antiviral. However, the virus may be identified after clear or through an escape mechanism from the host immune system attack, while mutation of the virus will have a stronger escape function. Currently, vaccine research has brought significant development, actively addressing the challenges of vaccine development, while citing innovative treatments to control the virus. By studying the mechanism of virus mutation and escape, it provides future research directions and priorities, and provides new ideas for the prevention and treatment of cancer, infectious diseases and other diseases. Through the research of viral immunology, it provides a clear direction for vaccine development, biosafety guarantee and the development of new technologies.

References

[1]  Breitbart, M. and Rohwer, F. (2005) Here a Virus, There a Virus, Everywhere the Same Virus? Trends in Microbiology, 13, 278-284.
https://doi.org/10.1016/j.tim.2005.04.003
[2]  Martínez-Acu?a, N., Lozano-Sepúlveda, S.A., Del Carmen Martínez-Guzmán, M. and Rivas-Estilla, A.M. (2022) Tiny Regulators in Viral Infection: Carving SARS-CoV-2 by MiRNAs. Microrna, 11, 185-189.
https://doi.org/10.2174/2211536611666220816124650
[3]  Katsarou, K., Bardani, E., Kallemi, P. and Kalantidis, K. (2019) Viral Detection: Past, Present, and Future. Bioessays, 41, E1900049.
https://doi.org/10.1002/bies.201900049
[4]  Paez-Espino, D., Eloe-Fadrosh, E.A., Pavlopoulos, G.A., Thomas, A.D., Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N.N. and Kyrpides, N.C. (2016) Uncovering Earth’s Virome. Nature, 536, 425-430.
https://doi.org/10.1038/nature19094
[5]  Woolhouse, M. and Gaunt, E. (2007) Ecological Origins of Novel Human Pathogens. Critical Reviews in Microbiology, 33, 231-242.
https://doi.org/10.1080/10408410701647560
[6]  Riedel, S. (2005) Edward Jenner and the History of Smallpox and Vaccination. Baylor University Medical Center Proceedings, 18, 21-25.
https://doi.org/10.1080/08998280.2005.11928028
[7]  Zahra, A., Hussain, T. and Sherwani, S.K. (2020) Life after COVID-19 Outbreak: Expectations and Thoughts. Advancements in Life Sciences, 7, 208-214.
[8]  Roshal, D., Konevtsova, O., Lo?dorfer Bo?i?, A., et al. (2019) PH-Induced Morphological Changes of Proteinaceous Viral Shells. Scientific Reports, 9, Article No. 5341.
https://doi.org/10.1038/s41598-019-41799-6
[9]  Mateu, M.G. (2013) Introduction: The Structural Basis of Virus Function. In: Mateu, M.G., Ed., Structure and Physics of Viruses: An Integrated Textbook, Springer, Berlin, 3-51.
https://doi.org/10.1007/978-94-007-6552-8_1
[10]  Nayak, D.P. (2000) Virus Morphology, Replication, and Assembly. In: Hurst, C.J., Ed., Viral Ecology, Elsevier, Amsterdam, 63-124.
https://doi.org/10.1016/B978-012362675-2/50004-5
[11]  Louten, J. (2016) Virus Structure and Classification. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 19-29.
https://doi.org/10.1016/B978-0-12-800947-5.00002-8
[12]  Hull, R. and Rima, B. (2020) Virus Taxonomy and Classification: Naming of Virus Species. Archives of Virology, 165, 2733-2736.
https://doi.org/10.1007/s00705-020-04748-7
[13]  Ma, Z., Ni, G. and Damania, B. (2018) Innate Sensing of DNA Virus Genomes. Annual Review of Virology, 5, 341-362.
https://doi.org/10.1146/annurev-virology-092917-043244
[14]  Chang, J. (2021) Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Network, 21, E6.
https://doi.org/10.4110/in.2021.21.e6
[15]  Raja, P., Lee, J.S., Pan, D., Pesola, J.M., Coen, D.M. and Knipe, D.M. (2016) A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin. MBio, 7, 1.
https://doi.org/10.1128/mBio.00633-16
[16]  Turnell, A.S. and Grand, R.J. (2012) DNA Viruses and the Cellular DNA-Damage Response. Journal of General Virology, 93, 2076-2097.
https://doi.org/10.1099/vir.0.044412-0
[17]  Kaján, G.L., Doszpoly, A., Tarján, Z.L., et al. (2020) Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. Journal of Molecular Evolution, 88, 41-56.
https://doi.org/10.1007/s00239-019-09913-4
[18]  Payne, S. (2017) Introduction to RNA Viruses. In: Payne, S., Ed., Viruses, Elsevier, Amsterdam, 97-105.
https://doi.org/10.1016/B978-0-12-803109-4.00010-6
[19]  Chen, Y.G. and Hur, S. (2022) Cellular Origins of DsRNA, Their Recognition and Consequences. Nature Reviews Molecular Cell Biology, 23, 286-301.
https://doi.org/10.1038/s41580-021-00430-1
[20]  ?antak, M. and Mati?, Z. (2022) The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses, 14, Article No. 521.
https://doi.org/10.3390/v14030521
[21]  Strauss, J.H. and Strauss, E.G. (2008) Plus-Strand RNA Viruses. In: Strauss, J.H. and Strauss, E.G., Eds., Viruses and Human Disease, Elsevier, Amsterdam, 63-136.
https://doi.org/10.1016/B978-0-12-373741-0.50006-4
[22]  Burrell, C.J., Howard, C.R. and Murphy, F.A. (2017) Virus Replication. In: Burrell, C.J., Howard, C.R. and Murphy, F.A., Eds., Fenner and Whites Medical Virology, Elsevier, Amsterdam, 39-55.
https://doi.org/10.1016/B978-0-12-375156-0.00004-7
[23]  Louten, J. (2016) Virus Replication. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 49-70.
https://doi.org/10.1016/B978-0-12-800947-5.00004-1
[24]  Rampersad, S. and Tennant, P. (2018) Replication and Expression Strategies of Viruses. In: Tennant, P., Fermin, G. and Foster, J.E., Eds., Viruses, Elsevier, Amsterdam, 55-82.
https://doi.org/10.1016/B978-0-12-811257-1.00003-6
[25]  Cann, A.J. (2008) Replication of Viruses. In: Mahy, B.W.J. and Van Regenmortel, M.H.V., Eds., Encyclopedia of Virology, Elsevier, Amsterdam, 406-412.
https://doi.org/10.1016/B978-012374410-4.00486-6
[26]  Serva, S. and Nagy, P.D. (2006) Proteomics Analysis of the Tombusvirus Replicase: Hsp70 Molecular Chaperone Is Associated with the Replicase and Enhances Viral RNA Replication. Journal of Virology, 80, 2162-2169.
https://doi.org/10.1128/JVI.80.5.2162-2169.2006
[27]  Pan, J.A., Peng, X., Gao, Y., et al. (2008) Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication. PLOS ONE, 3, E3299.
https://doi.org/10.1371/journal.pone.0003299
[28]  Chen, X., Liu, S., Goraya, M.U., Maarouf, M., Huang, S. and Chen, J.L. (2018) Host Immune Response to Influenza a Virus Infection. Frontiers in Immunology, 9, Article No. 320.
https://doi.org/10.3389/fimmu.2018.00320
[29]  Frazer, I.H. (2009) Interaction of Human Papillomaviruses with the Host Immune System: A Well Evolved Relationship. Virology, 384, 410-414.
https://doi.org/10.1016/j.virol.2008.10.004
[30]  Diamond, M.S. and Kanneganti, T.D. (2022) Innate Immunity: The First Line of Defense against SARS-CoV-2. Nature Immunology, 23, 165-176.
https://doi.org/10.1038/s41590-021-01091-0
[31]  Alcami, A., Ghazal, P. and Yewdell, J.W. (2002) Viruses in Control of the Immune System. Workshop on Molecular Mechanisms of Immune Modulation: Lessons from Viruses. EMBO Reports, 3, 927-932.
https://doi.org/10.1093/embo-reports/kvf200
[32]  Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659.
https://doi.org/10.1038/ni.2614
[33]  Uematsu, S. and Akira, S. (2006) Innate Immune Recognition of Viral Infection. Uirusu, 56, 1-8. (In Japanese)
https://doi.org/10.2222/jsv.56.1
[34]  Huang, X. and Yang, Y. (2009) Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 20, 293-301.
https://doi.org/10.1089/hum.2008.141
[35]  Rouse, B.T. and Sehrawat, S. (2010) Immunity and Immunopathology to Viruses: What Decides the Outcome? Nature Reviews Immunology, 10, 514-526.
https://doi.org/10.1038/nri2802
[36]  Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. and Ishii, K.J. (2011) Innate and Adaptive Immune Responses to Viral Infection and Vaccination. Current Opinion in Virology, 1, 226-232.
https://doi.org/10.1016/j.coviro.2011.07.002
[37]  Aristizábal, B. and González, á. (2013) Innate Immune System. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: From Bench to Bedside [Internet], El Rosario University Press, Bogota, 31, 39.
[38]  Cruvinel Wde, M., Mesquita, D, Araújo, J.A., Catelan, T.T., De Souza, A.W., Da Silva, N.P. and Andrade, L.E. (2010) Immune System—Part I. Fundamentals of Innate Immunity with Emphasis on Molecular and Cellular Mechanisms of Inflammatory Response. Revista Brasileira de Reumatologia, 50, 434-461.
https://doi.org/10.1590/S0482-50042010000400008
[39]  Kasuga, Y., Zhu, B., Jang, K.J. and Yoo, J.S. (2021) Innate Immune Sensing of Coronavirus and Viral Evasion Strategies. Experimental & Molecular Medicine, 53, 723-736.
https://doi.org/10.1038/s12276-021-00602-1
[40]  Schenten, D. and Medzhitov, R. (2011) The Control of Adaptive Immune Responses by the Innate Immune System. Advances in Immunology, 109, 87-124.
https://doi.org/10.1016/B978-0-12-387664-5.00003-0
[41]  Medzhitov, R. and Janeway, C.A. (1998) Innate Immune Recognition and Control of Adaptive Immune Responses. Seminars in Immunology, 10, 351-353.
https://doi.org/10.1006/smim.1998.0136
[42]  Barton, G.M. and Medzhitov, R. (2002) Control of Adaptive Immune Responses by Toll-Like Receptors. Current Opinion in Immunology, 14, 380-383.
https://doi.org/10.1016/S0952-7915(02)00343-6
[43]  Clem, A.S. (2011) Fundamentals of Vaccine Immunology. Journal of Global Infectious Diseases, 3, 73-78.
https://doi.org/10.4103/0974-777X.77299
[44]  Wang, B., Xi, X., Lei, X., et al. (2013) Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type Interferon Responses. PLOS Pathogens, 9, E1003231.
https://doi.org/10.1371/journal.ppat.1003231
[45]  Rajsbaum, R. and Garcia-Sastre, A. (2013) Viral Evasion Mechanisms of Early Antiviral Responses Involving Regulation of Ubiquitin Pathways. Trends in Microbiology, 21, 421-429.
https://doi.org/10.1016/j.tim.2013.06.006
[46]  Van Gent, M., Gram, A.M., Boer, I.G., et al. (2015) Silencing the Shutoff Protein of Epstein-Barr Virus in Productively Infected B Cells Points to (Innate) Targets for Immune Evasion. Journal of General Virology, 96, 858-865.
https://doi.org/10.1099/jgv.0.000021
[47]  Lei, X., Liu, X., Ma, Y., et al. (2010) The 3C Protein of Enterovirus 71 Inhibits Retinoid Acid-Inducible Gene I-Mediated Interferon Regulatory Factor 3 Activation and Type I Interferon Responses. Journal of Virology, 84, 8051-8061.
https://doi.org/10.1128/JVI.02491-09
[48]  Ding, Q., Cao, X., Lu, J., et al. (2013) Hepatitis C Virus NS4B Blocks the Interaction of STING and TBK1 to Evade Host Innate Immunity. Journal of Hepatology, 59, 52-58.
https://doi.org/10.1016/j.jhep.2013.03.019
[49]  Keating, S.E., Maloney, G.M., Moran, E.M., et al. (2007) IRAK-2 Participates in Multiple Toll-Like Receptor Signaling Pathways to NFkappaB via Activation of TRAF6 Ubiquitination. Journal of Biological Chemistry, 282, 33435-33443.
https://doi.org/10.1074/jbc.M705266200
[50]  Cardenas, W.B., Loo, Y.M., Gale, M., et al. (2006) Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits α/β Interferon Production Induced by RIG-I Signaling. Journal of Virology, 80, 5168-5178.
https://doi.org/10.1128/JVI.02199-05
[51]  Lei, X., Bai, Z., Ye, F., et al. (2010) Regulation of NF-κB Inhibitor IκBα and Viral Replication by a KSHV MicroRNA. Nature Cell Biology, 12, 193-199.
https://doi.org/10.1038/ncb2019
[52]  Huang, Y., Qi, Y., Ma, Y., et al. (2013) The Expression of Interleukin-32 Is Activated by Human Cytomegalovirus Infection and Down Regulated by Hcmv-MiR-UL112-1. Virology Journal, 10, Article No. 51.
https://doi.org/10.1186/1743-422X-10-51
[53]  Ho, B.C., Yu, I.S., Lu, L.F., et al. (2014) Inhibition of MiR-146a Prevents Enterovirus-Induced Death by Restoring the Production of Type I Interferon. Nature Communications, 5, Article No. 3344.
https://doi.org/10.1038/ncomms4344
[54]  Xu, C., He, X., Zheng, Z., et al. (2014) Downregulation of MicroRNA MiR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response. Journal of Virology, 88, 11356-11368.
https://doi.org/10.1128/JVI.01400-14
[55]  Lazarevic, I., Banko, A., Miljanovic, D., et al. (2019) Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses, 11, Article No. 778.
https://doi.org/10.3390/v11090778
[56]  Hoffmann, M., Krüger, N., Schulz, S., et al. (2022) The Omicron Variant Is Highly Resistant against Antibody-Mediated Neutralization: Implications for Control of the COVID-19 Pandemic. Cell, 185, 447-456.E11.
https://doi.org/10.1016/j.cell.2021.12.032
[57]  Bayarri-Olmos, R., Jarlhelt, I., Johnsen, L.B., et al. (2021) Functional Effects of Receptor-Binding Domain Mutations of SARS-CoV-2 B.1.351 and P.1 Variants. Frontiers in Immunology, 12, Article ID: 757197.
https://doi.org/10.3389/fimmu.2021.757197
[58]  Wahid, M., Jawed, A., Mandal, R.K., et al. (2021) Variants of SARS-CoV-2, Their Effects on Infection, Transmission and Neutralization by Vaccine-Induced Antibodies. European Review for Medical and Pharmacological Sciences, 25, 5857-5864.
[59]  Yi, C.Y., Sun, X.Y., Lin, Y.X., et al. (2021) Comprehensive Mapping of Binding Hot Spots of SARS-CoV-2 RBD-Specific Neutralizing Antibodies for Tracking Immune Escape Variants. Genome Medicine, 13, Article No. 164.
https://doi.org/10.1186/s13073-021-00985-w
[60]  Meganck, R.M. and Baric, R.S. (2021) Developing Therapeutic Approaches for Twenty-First-Century Emerging Infectious Viral Diseases. Nature Medicine, 27, 401-410.
https://doi.org/10.1038/s41591-021-01282-0
[61]  Felsenstein, S., et al. (2020) COVID-19: Immunology and Treatment Options. Clinical Immunology, 215, Article ID: 108448.
https://doi.org/10.1016/j.clim.2020.108448
[62]  Vallianou, N.G., et al. (2021) Anti-Viral Treatment for SARS-CoV-2 Infection: A Race against Time amidst the Ongoing Pandemic. Metabolism Open, 10, Article ID: 100096.
https://doi.org/10.1016/j.metop.2021.100096
[63]  Urban, S., Neumann-Haefelin, C. and Lampertico, P. (2021) Hepatitis D Virus in 2021: Virology, Immunology and New Treatment Approaches for a Difficult-to-Treat Disease. Gut, 70, 1782-1794.
https://doi.org/10.1136/gutjnl-2020-323888
[64]  Lee, S., et al. (2021) Virus-Induced Senescence Is a Driver and Therapeutic Target in COVID-19. Nature, 599, 283-289.
https://doi.org/10.1038/s41586-021-03995-1
[65]  Medhi, R., et al. (2020) Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials, 3, 8557-8580.
https://doi.org/10.1021/acsanm.0c01978
[66]  Finlay, B.B. and McFadden, G. (2006) Anti-Immunology: Evasion of the Host Immune System by Bacterial and Viral Pathogens. Cell, 124, 767-782.
https://doi.org/10.1016/j.cell.2006.01.034
[67]  Lunney, J.K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B. and Renukaradhya, G.J. (2016) Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annual Review of Animal Biosciences, 4, 129-154.
https://doi.org/10.1146/annurev-animal-022114-111025
[68]  Dokland, T. (2010) The Structural Biology of PRRSV. Virus Research, 154, 86-97.
https://doi.org/10.1016/j.virusres.2010.07.029
[69]  Ruedas-Torres, I., Rodríguez-Gómez, I.M., Sánchez-Carvajal, J.M., Larenas-Mu?oz, F., Pallarés, F.J., Carrasco, L. and Gómez-Laguna, J. (2021) The Jigsaw of PRRSV Virulence. Veterinary Microbiology, 260, Article ID: 109168.
https://doi.org/10.1016/j.vetmic.2021.109168
[70]  Murtaugh, M.P., Xiao, Z. and Zuckermann, F. (2002) Immunological Responses of Swine to Porcine Reproductive and Respiratory Syndrome Virus Infection. Viral Immunology, 15, 533-547.
https://doi.org/10.1089/088282402320914485
[71]  Zhou, X., Ramachandran, S., Mann, M. and Popkin, D.L. (2012) Role of Lymphocytic Choriomeningitis Virus (LCMV) in Understanding Viral Immunology: Past, Present and Future. Viruses, 4, 2650-2669.
https://doi.org/10.3390/v4112650
[72]  Maes, P., Clement, J., Gavrilovskaya, I. and Van Ranst, M. (2004) Hantaviruses: Immunology, Treatment, and Prevention. Viral Immunology, 17, 481-497.
https://doi.org/10.1089/vim.2004.17.481
[73]  Rahe, M.C. and Murtaugh, M.P. (2017) Effector Mechanisms of Humoral Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Veterinary Immunology and Immunopathology, 186, 15-18.
https://doi.org/10.1016/j.vetimm.2017.02.002
[74]  Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Wein, L.M., Andrews, J., Randlev, B., Heise, C., Uprichard, M., Hatfield, M., Rome, L., Rubin, J. and Kirn, D. (2002) Hepatic Arterial Infusion of a Replication-Selective Oncolytic Adenovirus (Dl1520): Phase II Viral, Immunologic, and Clinical Endpoints. Cancer Research, 62, 6070-6079.
[75]  Sreepadmanabh, M., Sahu, A.K. and Chande, A. (2020) COVID-19: Advances in Diagnostic Tools, Treatment Strategies, and Vaccine Development. Journal of Biosciences, 45, Article No. 148.
https://doi.org/10.1007/s12038-020-00114-6
[76]  Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C. and Ranasinghe, P. (2020) Enhancing Immunity in Viral Infections, with Special Emphasis on COVID-19: A Review. Diabetology Metabolic Syndrome, 14, 367-382.
https://doi.org/10.1016/j.dsx.2020.04.015
[77]  Primorac, D., Vrdoljak, K., Brlek, P., Paveli?, E., Molnar, V., Mati?i?, V., Erceg Ivko?i?, I. and Par?ina, M. (2022) Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in Immunology, 13, Article ID: 848582.
https://doi.org/10.3389/fimmu.2022.848582
[78]  Jeyanathan, M., Afkhami, S., Kang, A. and Xing, Z. (2023) Viral-Vectored Respiratory Mucosal Vaccine Strategies. Current Opinion in Immunology, 84, Article ID: 102370.
https://doi.org/10.1016/j.coi.2023.102370

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413