全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2024 

肠道微生物在急性砷暴露导致的肠道屏障损伤中的治疗研究进展
Research Progress on the Treatment of Gut Microbes in Intestinal Barrier Damage Caused by Acute Arsenic Exposure

DOI: 10.12677/bp.2024.142009, PP. 64-74

Keywords: 肠道微生物,急性砷暴露,肠道屏障,改善
Gut Microbes
, Acute Arsenic Exposure, Intestinal Barrier, Improvement

Full-Text   Cite this paper   Add to My Lib

Abstract:

众所周知,砷是一种有毒的类金属。砷的污染尤其是砷水污染在今天依然存在,全球有2亿人暴露于含砷的饮用水中,进而导致一系列身体损害。砷暴露导致的砷吸收主要来自小肠,稳定的肠道屏障有一定的自我防御机制,可以抵抗砷暴露带来的损害。肠道微生物在维护肠道屏障中发挥着至关重要的作用。例如,补充某些益生菌,或含有特定砷代谢功能的肠道微生物可以加速砷的代谢和螯合。更重要的是,某些肠道微生物可以增加肠道屏障,保护肠道屏障,进而缓解砷对肠道屏障造成的损伤。因此本研究通过查阅国内外文献,综述了肠道微生物及肠道微生物在砷暴露中的作用研究,为今后深入探讨其他未发现的肠道微生物在砷暴露中的作用提供研究方向。
Arsenic is a toxic, metal-like substance. Arsenic pollution, especially arsenic water pollution, still exists today, and 200 million people worldwide are exposed to arsenic-containing drinking water, leading to a range of physical damage. The absorption of arsenic caused by arsenic exposure mainly originates from the small intestine, and the stable intestinal barrier has a self-defense mechanism to resist the damage caused by arsenic exposure. Gut microbes play a vital role in maintaining the gut barrier. For example, supplementation with certain probiotics or gut microbes with specific arsenic metabolic functions can accelerate arsenic metabolism and chelation. More importantly, certain gut microbes can increase and protect the gut barrier, which in turn can alleviate the damage caused by arsenic to the intestinal barrier. Therefore, by referring to domestic and foreign literature, this study reviewed gut microbes and their role of gut microbes in arsenic exposure, providing a research direction for further exploration of the role of other undiscovered gut microbes in arsenic exposure.

References

[1]  Monteiro De Oliveira, E.C., Caixeta, E.S., Santos, V.S.V., et al. (2021) Arsenic Exposure from Groundwater: Environmental Contamination, Human Health Effects, and Sustainable Solutions. Journal of Toxicology and Environmental Health, Part B, 24, 119-135.
https://doi.org/10.1080/10937404.2021.1898504
[2]  Calatayud, M. and Laparra Llopis, J.M. (2015) Arsenic through the Gastrointestinal Tract. In: Flora, S.J.S., Ed., Handbook of Arsenic Toxicology, Academic Press, Cambridge, MA, 281-299.
https://doi.org/10.1016/B978-0-12-418688-0.00010-1
[3]  Ayotte, J.D., Medalie, L., Qi, S.L., Backer, L.C. and Nolan, B.T. (2017) Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environmental Science & Technology, 51, 12443-12454.
https://doi.org/10.1021/acs.est.7b02881
[4]  Concha, G., Nermell, B. and Vahter, M.V. (1998) Metabolism of Inorganic Arsenic in Children with Chronic High Arsenic Exposure in Northern Argentina. Environmental Health Perspectives, 106, 355-359.
https://doi.org/10.2307/3434042
[5]  赵引玲. 砷中毒的机理及治疗[J]. 陕西中医学院学报, 2002, 25(4): 60.
[6]  Antfolk, M. and Jensen, K.B. (2020) A Bioengineering Perspective on Modelling the Intestinal Epithelial Physiology in vitro. Nature Communications, 11, Article No. 6244.
https://doi.org/10.1038/s41467-020-20052-z
[7]  Ratnaike, R.N. (2003) Acute and Chronic Arsenic Toxicity. Postgraduate Medical Journal, 79, 391-396.
https://doi.org/10.1136/pmj.79.933.391
[8]  Backhed, F., Ley, R.E., Sonnenburg, J.L., et al. (2005) Host-Bacterial Mutualism in the Human Intestine. Science, 307, 1915-1920.
https://doi.org/10.1126/science.1104816
[9]  Qin, J., Li, R., Raes, J., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65.
https://doi.org/10.1038/nature08821
[10]  Bjorklund, G., Skalny, A.V., Rahman, M.M., et al. (2018) Toxic Metal(Loid)-Based Pollutants and Their Possible Role in Autism Spectrum Disorder. Environmental Research, 166, 234-250.
https://doi.org/10.1016/j.envres.2018.05.020
[11]  Bradberry, S. and Vale, A. (2009) A Comparison of Sodium Calcium Edetate (Edetate Calcium Disodium) and Succimer (DMSA) in the Treatment of Inorganic Lead Poisoning. Clinical Toxicology, 47, 841-858.
https://doi.org/10.3109/15563650903321064
[12]  Glenn, J.D. and Mowry, E.M. (2016) Emerging Concepts on the Gut Microbiome and Multiple Sclerosis. Journal of Interferon & Cytokine Research, 36, 347-357.
https://doi.org/10.1089/jir.2015.0177
[13]  Sweeney, T.E. and Morton, J.M. (2013) The Human Gut Microbiome: A Review of the Effect of Obesity and Surgically Induced Weight Loss. JAMA Surgery, 148, 563-569.
https://doi.org/10.1001/jamasurg.2013.5
[14]  Vandeputte, D. (2020) Personalized Nutrition through the Gut Microbiota: Current Insights and Future Perspectives. Nutrition Reviews, 78, 66-74.
https://doi.org/10.1093/nutrit/nuaa098
[15]  O’Hara, A.M. and Shanahan, F. (2006) The Gut Flora as a Forgotten Organ. EMBO Reports, 7, 688-693.
https://doi.org/10.1038/sj.embor.7400731
[16]  Coryell, M., Mcalpine, M., Pinkham, N.V., et al. (2018) The Gut Microbiome Is Required for Full Protection against Acute Arsenic Toxicity in Mouse Models. Nature Communications, 9, Article No. 5424.
https://doi.org/10.1038/s41467-018-07803-9
[17]  Falk, P.G., Hooper, L.V., Midtvedt, T. and Gordon, J.I. (1998) Creating and Maintaining the Gastrointestinal Ecosystem: What We Know and Need to Know from Gnotobiology. Microbiology and Molecular Biology Reviews, 62, 1157-1170.
https://doi.org/10.1128/MMBR.62.4.1157-1170.1998
[18]  Round, J.L. and Mazmanian, S.K. (2009) The Gut Microbiota Shapes Intestinal Immune Responses during Health and Disease. Nature Reviews Immunology, 9, 313-323.
https://doi.org/10.1038/nri2515
[19]  Wu, J., Zhao, Y., Wang, X., et al. (2022) Dietary Nutrients Shape Gut Microbes and Intestinal Mucosa via Epigenetic Modifications. Critical Reviews in Food Science and Nutrition, 62, 783-797.
https://doi.org/10.1080/10408398.2020.1828813
[20]  Zhang, J., Zhu, S., Ma, N., et al. (2021) Metabolites of Microbiota Response to Tryptophan and Intestinal Mucosal Immunity: A Therapeutic Target to Control Intestinal Inflammation. Medicinal Research Reviews, 41, 1061-1088.
https://doi.org/10.1002/med.21752
[21]  Sanders, M.E., Merenstein, D.J., Reid, G., et al. (2019) Probiotics and Prebiotics in Intestinal Health and Disease: From Biology to the Clinic. Nature Reviews Gastroenterology & Hepatology, 16, 605-616.
https://doi.org/10.1038/s41575-019-0173-3
[22]  Yu, Y., Sitaraman, S. and Gewirtz, A.T. (2004) Intestinal Epithelial Cell Regulation of Mucosal Inflammation. Immunologic Research, 29, 55-67.
https://doi.org/10.1385/IR:29:1-3:055
[23]  Kuhn, K.A., Pedraza, I. and Demoruelle, M.K. (2014) Mucosal Immune Responses to Microbiota in the Development of Autoimmune Disease. Rheumatic Disease Clinics, 40, 711-725.
https://doi.org/10.1016/j.rdc.2014.07.013
[24]  Sassone-Corsi, M., Nuccio, S.-P., Liu, H., et al. (2016) Microcins Mediate Competition among Enterobacteriaceae in the Inflamed Gut. Nature, 540, 280-283.
https://doi.org/10.1038/nature20557
[25]  Chi, L., Bian, X., Gao, B., Tu, P., et al. (2017) The Effects of an Environmentally Relevant Level of Arsenic on the Gut Microbiome and Its Functional Metagenome. Toxicological Sciences, 160, 193-204.
https://doi.org/10.1093/toxsci/kfx174
[26]  Griggs, J.L., Chi, L., Hanley, N.M., et al. (2022) Bioaccessibility of Arsenic from Contaminated Soils and Alteration of the Gut Microbiome in an in vitro Gastrointestinal Model. Environmental Pollution, 309, Article 119753.
https://doi.org/10.1016/j.envpol.2022.119753
[27]  Hoen, A.G., Madan, J.C., Li, Z., et al. (2018) Sex-Specific Associations of Infants’ Gut Microbiome with Arsenic Exposure in a US Population. Scientific Reports, 8, Article No. 12627.
https://doi.org/10.1038/s41598-018-30581-9
[28]  Madan, J.C., Farzan, S.F., Hibberd, P.L., et al. (2012) Normal Neonatal Microbiome Variation in Relation to Environmental Factors, Infection and Allergy. Current Opinion in Pediatrics, 24, 753-759.
https://doi.org/10.1097/MOP.0b013e32835a1ac8
[29]  Laue, H.E., Moroishi, Y., Jackson, B.P., et al. (2020) Nutrient-Toxic Element Mixtures and the Early Postnatal Gut Microbiome in a United States Longitudinal Birth Cohort. Environment International, 138, Article 105613.
https://doi.org/10.1016/j.envint.2020.105613
[30]  Karagas, M.R., McRitchie, S., Hoen, A.G., et al. (2023) Alterations in Microbial-Associated Fecal Metabolites in Relation to Arsenic Exposure among Infants. Exposure and Health, 14, 941-949.
https://doi.org/10.1007/s12403-022-00468-2
[31]  Domene, A., Orozco, H., Rodríguez-Viso, P., et al. (2023) Impact of Chronic Exposure to Arsenate through Drinking Water on the Intestinal Barrier. Chemical Research in Toxicology, 36, 1731-1744.
[32]  Li, D., Yang, Y., Li, Y., et al. (2021) Changes Induced by Chronic Exposure to High Arsenic Concentrations in the Intestine and Its Microenvironment. Toxicology, 456, Article 152767.
https://doi.org/10.1016/j.tox.2021.152767
[33]  Ye, Z., Huang, L., Zhang, J., et al. (2022) Biodegradation of Arsenobetaine to Inorganic Arsenic Regulated by Specific Microorganisms and Metabolites in Mice. Toxicology, 475, Article 153238.
https://doi.org/10.1016/j.tox.2022.153238
[34]  Singh, D.P., Yadav, S.K., Patel, K., et al. (2022) Short-Term Trivalent Arsenic and Hexavalent Chromium Exposures Induce Gut Dysbiosis and Transcriptional Alteration in Adipose Tissue of Mice. Molecular Biology Reports, 50, 1033-1044.
https://doi.org/10.1007/s11033-022-07992-z
[35]  Deng, Z., Yin, X., Zhang, S., et al. (2023) Study on Arsenic Speciation, Bioaccessibility, and Gut Microbiota in Realgar-Containing Medicines by DGT Technique and Artificial Gastrointestinal Extraction (PBET) Combine with Simulated Human Intestinal Microbial Ecosystem (SHIME). Journal of Hazardous Materials, 463, Article 132863.
https://doi.org/10.1016/j.jhazmat.2023.132863
[36]  Yang, Y., Chi, L., Liu, C.-W., et al. (2023) Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chemical Research in Toxicology, 36, 1037-1043.
https://doi.org/10.1021/acs.chemrestox.2c00410
[37]  Wu, H., Wu, R., Chen, X., Ceng, H., et al. (2022) Developmental Arsenic Exposure Induces Dysbiosis of Gut Microbiota and Disruption of Plasma Metabolites in Mice. Toxicology and Applied Pharmacology, 450, Article 116174.
https://doi.org/10.1016/j.taap.2022.116174
[38]  Zhong, G., Wan, F., Lan, J., et al. (2021) Arsenic Exposure Induces Intestinal Barrier Damage and Consequent Activation of Gut-Liver Axis Leading to Inflammation and Pyroptosis of Liver in Ducks. Science of the Total Environment, 788, Article 147780.
https://doi.org/10.1016/j.scitotenv.2021.147780
[39]  Tandon, N., Roy, M., Roy, S., et al. (2012) Protective Effect of Psidium Guajava in Arsenic-Induced Oxidative Stress and Cytological Damage in Rats. Toxicology International, 19, 245-249.
https://doi.org/10.4103/0971-6580.103658
[40]  Gupta, D.K., Inouhe, M., Rodriguez-Serrano, M., et al. (2013) Oxidative Stress and Arsenic Toxicity: Role of NADPH Oxidases. Chemosphere, 90, 1987-1996.
https://doi.org/10.1016/j.chemosphere.2012.10.066
[41]  Wang, J., Hu, W., Yang, H., et al. (2020) Arsenic Concentrations, Diversity and Co-Occurrence Patterns of Bacterial and Fungal Communities in the Feces of Mice under Sub-Chronic Arsenic Exposure through Food. Environment International, 138, Article 105600.
https://doi.org/10.1016/j.envint.2020.105600
[42]  Wang, H.-T., Ma, L., Zhu, D., et al. (2021) Responses of Earthworm Metaphire vulgaris Gut Microbiota to Arsenic and Nanoplastics Contamination. Science of the Total Environment, 806, Article 150279.
https://doi.org/10.1016/j.scitotenv.2021.150279
[43]  Song, D., Chen, L., Zhu, S., et al. (2022) Gut Microbiota Promote Biotransformation and Bioaccumulation of Arsenic in Tilapia. Environmental Pollution, 305, Article 119321.
https://doi.org/10.1016/j.envpol.2022.119321
[44]  Kaur, R. and Rawal, R. (2023) Influence of Heavy Metal Exposure on Gut Microbiota: Recent Advances. Journal of Biochemical and Molecular, 37, e23485.
https://doi.org/10.1002/jbt.23485
[45]  Mirza Alizadeh, A., Hosseini, H., Mollakhalili Meybodi, N., et al. (2022) Mitigation of Potentially Toxic Elements in Food Products by Probiotic Bacteria: A Comprehensive Review. Food Research International, 152, Article 110324.
https://doi.org/10.1016/j.foodres.2021.110324
[46]  Van de Wiele, T., Gallawa, C.M., Kubachka, K.M., et al. (2010) Arsenic Metabolism by Human Gut Microbiota upon in vitro Digestion of Contaminated Soils. Environmental Health Perspectives, 118, 1004-1009.
https://doi.org/10.1289/ehp.0901794
[47]  Sun, G.-X., Van de Wiele, T., Alava, P., et al. (2012) Arsenic in Cooked Rice: Effect of Chemical, Enzymatic and Microbial Processes on Bioaccessibility and Speciation in the Human Gastrointestinal Tract. Environmental Pollution, 162, 241-246.
https://doi.org/10.1016/j.envpol.2011.11.021
[48]  Du, X., Zhang, J., Zhang, X., et al. (2021) Persistence and Reversibility of Arsenic-Induced Gut Microbiome and Metabolome Shifts in Male Rats after 30-Days Recovery Duration. Science of the Total Environment, 776, Article 145972.
https://doi.org/10.1016/j.scitotenv.2021.145972
[49]  Zhao, Q., Hao, Y., Yang, X., et al. (2023) Mitigation of Maternal Fecal Microbiota Transplantation on Neurobehavioral Deficits of Offspring Rats Prenatally Exposed to Arsenic: Role of Microbiota-Gut-Brain Axis. Journal of Hazardous Materials, 457, Article 131816.
https://doi.org/10.1016/j.jhazmat.2023.131816
[50]  Liu, X., Wang, J., Deng, H., et al. (2022) In situ Analysis of Variations of Arsenicals, Microbiome and Transcriptome Profiles along Murine Intestinal Tract. Journal of Hazardous Materials, 427, Article 127899.
https://doi.org/10.1016/j.jhazmat.2021.127899
[51]  Fu, Y., Yin, N., Cai, X., et al. (2021) Arsenic Speciation and Bioaccessibility in Raw and Cooked Seafood: Influence of Seafood Species and Gut Microbiota. Environmental Pollution, 280, Article 116958.
https://doi.org/10.1016/j.envpol.2021.116958
[52]  Bolan, S., Seshadri, B., Keely, S., et al. (2021) Bioavailability of Arsenic, Cadmium, Lead and Mercury as Measured by Intestinal Permeability. Scientific Reports, 11, Article No. 14675.
https://doi.org/10.1038/s41598-021-94174-9
[53]  Shao, J., Lai, C., Zheng, Q., et al. (2024) Effects of Dietary Arsenic Exposure on Liver Metabolism in Mice. Ecotoxicology and Environmental Safety, 274, Article 116147.
https://doi.org/10.1016/j.ecoenv.2024.116147
[54]  McDermott, T.R., Stolz, J.F. and Oremland, R.S. (2019) Arsenic and the Gastrointestinal Tract Microbiome. Environmental Microbiology Reports, 12, 136-159.
https://doi.org/10.1111/1758-2229.12814
[55]  Ghosh, S., Banerjee, M., Haribabu, B. and Jala, V.R. (2022) Urolithin a Attenuates Arsenic-Induced Gut Barrier Dysfunction. Archives of Toxicology, 96, 987-1007.
https://doi.org/10.1007/s00204-022-03232-2
[56]  Li, M.-Y., Chen, X.-Q., Wang, J.-Y., et al. (2021) Antibiotic Exposure Decreases Soil Arsenic Oral Bioavailability in Mice by Disrupting Ileal Microbiota and Metabolic Profile. Environment International, 151, Article 106444.
https://doi.org/10.1016/j.envint.2021.106444
[57]  Xu, W., Zhang, S., Jiang, W., et al. (2020) Arsenic Accumulation of Realgar Altered by Disruption of Gut Microbiota in Mice. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 8380473.
https://doi.org/10.1155/2020/8380473
[58]  Yin, N., Cai, X., Zheng, L., et al. (2020) In vitro Assessment of Arsenic Release and Transformation from As(V)-Sorbed Goethite and Jarosite: The Influence of Human Gut Microbiota. Environmental Science & Technology, 54, 4432-4442.
https://doi.org/10.1021/acs.est.9b07235
[59]  Chi, L., Xue, J., Tu, P., et al. (2019) Gut Microbiome Disruption Altered the Biotransformation and Liver Toxicity of Arsenic in Mice. Archives of Toxicology, 93, 25-35.
https://doi.org/10.1007/s00204-018-2332-7
[60]  Bisanz, J.E., Enos, M.K., Mwanga, J.R., et al. (2014) Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children. mBio, 5, e01580-14.
https://doi.org/10.1128/mBio.01580-14
[61]  Zhou, G.-W., Yang, X.-R., Zheng, F., et al. (2020) Arsenic Transformation Mediated by Gut Microbiota Affects the Fecundity of Caenorhabditis elegans. Environmental Pollution, 260, Article 113991.
https://doi.org/10.1016/j.envpol.2020.113991
[62]  Yin, N., Cai, X., Wang, P., et al. (2021) Predictive Capabilities of in vitro Colon Bioaccessibility for Estimating in vivo Relative Bioavailability of Arsenic from Contaminated Soils: Arsenic Speciation and Gut Microbiota Considerations. Science of the Total Environment, 818, Article 151804.
https://doi.org/10.1016/j.scitotenv.2021.151804
[63]  Zhang, Y.-S., Juhasz, A.L., Xi, J.-F., et al. (2023) Dietary Galactooligosaccharides Supplementation as a Gut Microbiota-Regulating Approach to Lower Early Life Arsenic Exposure. Environmental Science & Technology, 57, 19463-19472.
https://doi.org/10.1021/acs.est.3c07168
[64]  Ji, Z.-H., He, S., Xie, W.-Y., et al. (2023) Agaricus blazei Polysaccharide Alleviates DSS-Induced Colitis in Mice by Modulating Intestinal Barrier and Remodeling Metabolism. Nutrients, 15, Article 4877.
https://doi.org/10.3390/nu15234877
[65]  Isokpehi, R.D., Udensi, U.K., Simmons, S.S., et al. (2014) Evaluative Profiling of Arsenic Sensing and Regulatory Systems in the Human Microbiome Project Genomes. Microbiology Insights, 7, 25-34.
https://doi.org/10.4137/MBI.S18076
[66]  Lu, K., Cable, P.H., Abo, R.P., et al. (2013) Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation. Chemical Research in Toxicology, 26, 1893-1903.
https://doi.org/10.1021/tx4002868
[67]  Wang, H.-T., Liang, Z.-Z., Ding, J., et al. (2021) Arsenic Bioaccumulation in the Soil Fauna Alters Its Gut Microbiome and Microbial Arsenic Biotransformation Capacity. Journal of Hazardous Materials, 417, Article 126018.
https://doi.org/10.1016/j.jhazmat.2021.126018
[68]  Wang, P., Du, H., Fu, Y., et al. (2022) Role of Human Gut Bacteria in Arsenic Biosorption and Biotransformation. Environment International, 165, Article 107314.
https://doi.org/10.1016/j.envint.2022.107314
[69]  Rawle, R., Saley, T.C., Kang, Y.-S., et al. (2021) Introducing the ArsR-Regulated Arsenic Stimulon. Frontiers in Microbiology, 12, Article 630562.
https://doi.org/10.3389/fmicb.2021.630562
[70]  Bajaj, J.S., Ng, S.C. and Schnabl, B. (2022) Promises of Microbiome-Based Therapies. Journal of Hepatology, 76, 1379-1391.
https://doi.org/10.1016/j.jhep.2021.12.003

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413