全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

GraphPLA:一种预测蛋白质–配体结合亲和力的图神经网络方法
GraphPLA: A Graph Neural Networks Method to Predict Protein-Ligand Binding Affinity

DOI: 10.12677/hjcb.2024.141001, PP. 1-11

Keywords: 蛋白质–配体结合亲和力,图卷积神经网络,深度学习,蛋白质–配体结合口袋,图注意力网络
Protein-Ligand Binding Affinity
, Graph Convolutional Neural Network, Deep-Learning, Protein-Ligand Pocket, Graph Attention Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

蛋白质–配体结合亲和力是蛋白质与配体相互作用强度的一个重要指标。准确预测蛋白质–配体结合亲和力对于发现药物的新应用至关重要。迄今为止,已经开发了许多计算技术来预测结合亲和力;然而,这些技术中的一部分需要并不常见的蛋白质三维结构,一些方法还将配体表示为不是分子的适当表示的SMILES串。为了避免这些问题,本文开发了一种名为GraphPLA的新模型,使用具有直接结合配体的独特特征的蛋白质结合口袋作为局部输入特征。还使用扩展卷积来捕捉蛋白质的多尺度远程相互作用,图神经网络来学习配体的图表示。实验结果表明,GraphPLA的RMSE为1.388,MAE为1.118,R为0.795,SD为1.345,CI为0.796,优于目前最先进的预测方法,可以有效预测蛋白质–配体结合亲和力。
Protein-ligand binding affinity is an important indicator of the strength of protein-ligand interactions. Accurately predicting protein-ligand binding affinity is crucial for discovering new applications for drugs. To date, many computational techniques have been developed to predict binding affinity. However, some of these technologies require uncommon protein three-dimensional structures, and some methods also represent ligands as SMILES strings that are not appropriate representations of molecules. To avoid these issues, this paper develops a new model called GraphPLA, which uses protein binding pockets with unique features of directly binding ligands as local input features. Extended convolution is also used to capture multi-scale remote interactions of proteins, and a graph neural network is used to learn the graph representation of ligands. The experimental results show that the RMSE of GraphPLA is 1.388, MAE is 1.118, R is 0.795, SD is 1.345, and CI is 0.796, which is superior to the most advanced prediction methods and can effectively predict protein-ligand binding affinity.

References

[1]  宋益东, 袁乾沐, 杨跃东. 深度学习在蛋白质功能预测中的应用[J]. 合成生物学, 2023, 4(3): 488-506.
[2]  Stepniewska-Dziubinska, M.M., Zielenkiewicz, P. and Siedlecki, P. (2018) Development and Evaluation of a Deep Learning Model for Protein-Ligand Binding Affinity Prediction. Bioinformatics, 34, 3666-3674.
https://doi.org/10.1093/bioinformatics/bty374
[3]  Rezaei, M., Li, Y., Li, X., et al. (2019) Improving the Accuracy of Protein-Ligand Binding Affinity Prediction by Deep Learning Models: Benchmark and Model. ChemRxiv.
https://doi.org/10.26434/chemrxiv.9866912
[4]  Ahmed, A., Mam, B. and Sowdhamini, R. (2021) DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity. Bioinformatics and Biology Insights, 15.
https://doi.org/10.1177/11779322211030364
[5]  Cang, Z. and Wei, G.W. (2017) TopologyNet: Topology Based Deep Convolutional and Multi-Task Neural Networks for Biomolecular Property Predictions. PLOS Computational Biology, 13, e1005690.
https://doi.org/10.1371/journal.pcbi.1005690
[6]  ?ztürk, H., ?zgür, A. and Ozkirimli, E. (2018) DeepDTA: Deep Drug-Target Binding Affinity Prediction. Bioinformatics, 34, i821-i829.
https://doi.org/10.1093/bioinformatics/bty593
[7]  Liu, L., Zhang, Q., Wei, Y., et al. (2023) A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction. Molecules, 28, Article 6546.
https://doi.org/10.3390/molecules28186546
[8]  周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
[9]  徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
[10]  焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716.
[11]  Wang, T., Sun, J. and Zhao, Q. (2023) Investigating Cardiotoxicity Related with hERG Channel Blockers Using Molecular Fingerprints and Graph Attention Mechanism. Computers in Biology and Medicine, 153, Article 106464.
https://doi.org/10.1016/j.compbiomed.2022.106464
[12]  吴博, 梁循, 张树森, 等. 图神经网络前沿进展与应用[J]. 计算机学报, 2022, 45(1): 35-68.
[13]  Kipf, T.N. and Welling, M. (2016) Semi-Supervised Classification with Graph Convolutional Networks.
[14]  Veli?kovi?, P., Cucurull, G., Casanova, A., et al. (2017) Graph Attention Networks. arXiv preprint arXiv:1710.10903
[15]  Nguyen, T., Le, H., Quinn, T.P., et al. (2021) GraphDTA: Predicting Drug-Target Binding Affinity with Graph Neural Networks. Bioinformatics, 37, 1140-1147.
https://doi.org/10.1093/bioinformatics/btaa921

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133