全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑消落带碳排放的丹江口水库生态调度研究
Ecological Operation of Danjiangkou Reservoir Considering Drawdown Area Carbon Emissions

DOI: 10.12677/jwrr.2024.132013, PP. 105-115

Keywords: 生态调度,生态目标,消落带,碳排放,河流生态
Ecological Operation
, Ecological Objectives, Drawdown Area, Carbon Emissions, River Ecology

Full-Text   Cite this paper   Add to My Lib

Abstract:

在“双碳”目标下,水库消落带的碳排放导致碳汇属性受到争议。现有生态调度研究主要聚焦于河流生态需求,未将消落带碳排放纳入考虑,生态调度目标有待完善。本论文以丹江口水库与汉江中下游为研究对象,开展消落带碳排放模拟和水库生态调度模型构建两个方面研究。提出了基于消落带面积和碳排放强度季节差异的碳排放量计算方法,建立了考虑消落带碳排放的多目标优化调度模型,求解得到帕累托解集并推求优化调度图,根据调度目标之间的相关性明确了其协同竞争关系。研究结果表明:丹江口水库消落带面积与水位之间的相关性强,消落带落干区和退水区全年作为碳源,淹水区夏季作为碳源,冬季作为碳汇,年内的碳源效应和碳汇效应基本抵消。优化调度方案能够兼顾生态效益与社会经济效益,年均消落带碳排放量降低3.19%。年均碳排放量与年均发电量、鱼卵孵化适宜河段长度、营养状态破坏率呈竞争关系,与年均供水量、浮游植物密度呈协同关系,与水文变异度相关性较弱。本论文可丰富水库生态调度的内涵。
Under the carbon peaking and carbon neutrality goals, the carbon emissions from the drawdown area had led to controversy over the carbon sink attributes of the reservoir. Existing research mainly focused on river ecological requirements, ignoring the drawdown area carbon emissions, and ecological operation objectives were required to be expanded. With the middle and lower reaches of the Han River and the Danjiangkou Reservoir as the study area, this paper focused on the reservoir ecological objective simula-tion and ecological operation. The carbon emissions were calculated by considering the area fluctuations and the carbon emission intensity. The multi-objective optimization operation model considering the drawdown area carbon emissions and the downstream ecology was established, and the Pareto solution set and the preferred operation rule curves were obtained. The correlations between the operation objec-tives were clarified. The research results indicated that the area of the drawdown area showed a signifi-cant correlation with the water level. The drawdown area of the Danjiangkou Reservoir acted as a carbon source throughout the year, and the source-sink effects in the flooded area were offset. The preferred op-eration rule curves balanced the socioeconomic and ecological benefits, the annual average carbon emis-sions decreased by 3.19%. The annual average carbon emissions were significantly negatively correlated with the annual average hydropower generation, the suitable river length for fish spawning, and the devi-ation rate of the trophic level index, positively correlated with the annual average water supply and phy-toplankton density, weakly correlated with the deviation of variability range. This paper enriched the connotations of reservoir ecological operation.

References

[1]  吴晨, 刘攀. 面向“双碳”目标的水库调度研究进展与展望[J]. 水资源研究, 2022, 11(1): 1-19.
[2]  YANG, Z., LUO, X., SHI, Y., et al. Controls and variability of soil respiration temperature sensitivity across China. Science of the Total Environment, 2023, 871: 161974.
https://doi.org/10.1016/j.scitotenv.2023.161974
[3]  KOSTEN, S., VAN DEN BERG, S., MENDON?A, R., et al. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas. Inland Waters, 2018, 8(3): 329-340.
https://doi.org/10.1080/20442041.2018.1483126
[4]  ELBERLING, B. Seasonal trends of soil CO2 dy-namics in a soil subject to freezing. Journal of Hydrology, 2003, 276(1-4): 159-175.
https://doi.org/10.1016/S0022-1694(03)00067-2
[5]  KELLER, P. S., CATALáN, N., VON SCHILLER, D., et al. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 2020, 11(1): 2126.
https://doi.org/10.1038/s41467-020-15929-y
[6]  YU, Y., HUANG, Y. and ZHANG, W. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011-2050. Agriculture, Ecosystems & Environ-ment, 2013, 178: 109-120.
https://doi.org/10.1016/j.agee.2013.06.008
[7]  LI, Z., ZHANG, Z., LIN, C., et al. Soil-air greenhouse gas fluxes influ-enced by farming practices in reservoir drawdown area: A case at the three gorges reservoir in China. Journal of Environmental Management, 2016, 181: 64-73.
https://doi.org/10.1016/j.jenvman.2016.05.080
[8]  苏维词. 三峡库区消落带的生态环境问题及其调控[J]. 长江科学院院报, 2004(2): 32-34.
[9]  MARCé, R., OBRADOR, B., GóMEZ-GENER, L., et al. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Science Reviews, 2019, 188: 240-248.
https://doi.org/10.1016/j.earscirev.2018.11.012
[10]  KELLER, P., MARCé, R., OBRADOR, B., et al. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience, 2021, 14(6): 402.
https://doi.org/10.1038/s41561-021-00734-z
[11]  YANG, L., LU, H., YU, X., et al. Carbon dioxide flux in the drained drawdown areas of three gorges reservoir. Frontiers in Environmental Science, 2022, 10: 1015888.
https://doi.org/10.3389/fenvs.2022.1015888
[12]  罗琪, 周研来, 朱迪, 等. 面向温室气体管控的汉江中下游水工程群多目标优化调度[J]. 南水北调与水利科技(中英文), 2023, 21(5): 895-906.
[13]  杨翊辰, 刘攀, 李诗琼, 等. 一种提升水库碳效益的优化调度方法及系统[P]. 中国, CN202311692888.5. 2024-04-02.
[14]  HAO, Q., CHEN, S., NI, X., et al. Methane and nitrous oxide emissions from the drawdown areas of the three gorges reservoir. Science of the Total Environment, 2019, 660: 567-576.
https://doi.org/10.1016/j.scitotenv.2019.01.050
[15]  CAREY, J. C., TANG, J., TEMPLER, P. H., et al. Temper-ature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences, 2016, 113(48): 13797-13802.
https://doi.org/10.1073/pnas.1605365113
[16]  CHEN, S., ZOU, J., YAO, X., et al. A biophysical model to simulate sea-sonal variations of soil respiration in agroecosystems in China. Agricultural and Forest Meteorology, 2023, 338: 109524.
https://doi.org/10.1016/j.agrformet.2023.109524
[17]  BOSATTA, E., ?GREN, G. I. Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry, 1999, 31(13): 1889-1891.
https://doi.org/10.1016/S0038-0717(99)00105-4
[18]  FIERER, N., CRAINE, J. M., MCLAUCHLAN, K., et al. Litter quality and the temperature sensitivity of decomposition. Ecology, 2005, 86(2): 320-326.
https://doi.org/10.1890/04-1254
[19]  HARRISON, J. A., DEEMER, B. R., BIRCHFIELD, M. K., et al. Reservoir wa-ter-level drawdowns accelerate and amplify methane emission. Environmental Science & Technology, 2017, 51(3): 1267-1277.
https://doi.org/10.1021/acs.est.6b03185
[20]  CRUZ-PAREDES, C., TáJMEL, D. and ROUSK, J. Can moisture affect temperature dependences of microbial growth and respiration? Soil Biology and Biochemistry, 2021, 156: 108223.
https://doi.org/10.1016/j.soilbio.2021.108223
[21]  WANG, W., ROULET, N. T., KIM, Y., et al. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir. Science of the Total Environment, 2018, 612: 392-404.
https://doi.org/10.1016/j.scitotenv.2017.08.203
[22]  何术锋, 胡威, 杨早立, 等. 汉江中下游藻华暴发特征及生态流量阈值[J]. 中国环境科学, 2024, 44(1): 363-370.
https://doi.org/10.19674/j.cnki.issn1000-6923.20230823.015
[23]  XIA, R., WANG, G., ZHANG, Y., et al. River algal blooms are well predicted by antecedent environmental conditions. Water Research, 2020, 185: 116221.
https://doi.org/10.1016/j.watres.2020.116221
[24]  刘攀, 郑雅莲, 谢康, 等. 水文水资源领域深度学习研究进展综述[J]. 人民长江, 2021, 52(10): 76-83.
[25]  杨翊辰, 刘攀, 王奕博, 等. 基于长短期记忆模型的汉江中下游藻类防控调度[J]. 南水北调与水利科技(中英文), 2023, 21(2): 324-331.
[26]  杨翊辰, 刘攀, 王奕博. 一种基于机器学习的水华防控调度方法[P]. 中国, CN202310099136.1. 2023-04-21.
[27]  CHENG, Q., LUO, P., LIU, P., et al. Stochastic short-term scheduling of a wind-solar-hydro complementary system considering both the day-ahead market bidding and bilateral contracts decomposition. International Journal of Electrical Power & Energy Systems, 2022, 138: 107904.
https://doi.org/10.1016/j.ijepes.2021.107904
[28]  雷鸿萱, 刘攀, 马黎, 等. 水风光多能互补系统中长期功率联合预报[J]. 水力发电学报, 2023, 42(9): 22-33.
[29]  刘攀, 张文选, 李天元. 考虑发电风险率的水库优化调度图编制[J]. 水力发电学报, 2013, 32(4): 252-259.
[30]  杨光, 郭生练, 刘攀, 等. Pa-Dds算法在水库多目标优化调度中的应用[J]. 水利学报, 2016, 47(6): 789-797.
[31]  郑雅莲, 刘攀, 李潇, 等. 协调发电量及弃水量的水库群汛前消落水位研究[J]. 中国农村水利水电, 2022(5): 216-220.
[32]  刘攀. 水库洪水资源化调度关键技术研究[D]: [博士学位论文]. 武汉: 武汉大学, 2006.
[33]  程潜, 刘攀, 明波. 基于改进双层嵌套优化算法的梯级水电站短期经济运行研究[J]. 武汉大学学报(工学版), 2022, 55(12): 1191-1197.
[34]  夏军, 马协一, 邹磊, 等. 气候变化和人类活动对汉江上游径流变化影响的定量研究[J]. 南水北调与水利科技, 2017, 15(1): 1-6.
[35]  万力, 蔡玉鹏, 唐会元, 等. 汉江中下游产漂流性卵鱼类早期资源现状的初步研究[J]. 水生态学杂志, 2011, 32(4): 53-57.
[36]  陈明千, 脱友才, 李嘉, 等. 鱼类产卵场水力生境指标体系初步研究[J]. 水利学报, 2013, 44(11): 1303-1308.
[37]  LIU, H., LIN, J., WANG, D., et al. Experimental study of the behavioral response of fish to changes in hydrodynamic indicators in a near-natural environment. Ecological Indicators, 2023, 154: 110813.
https://doi.org/10.1016/j.ecolind.2023.110813
[38]  陈峰, 王文静, 何涛, 等. 2022年夏季汉江中下游水华成因及对策分析[J]. 人民长江, 2023: 1-13.
[39]  张晓琦, 刘攀, 陈进, 等. 基于条件风险价值理论的水库群防洪库容协同作用[J]. 水科学进展, 2022, 33(2): 298-305.
[40]  WANG, Y., LIU, P., SOLOMATINE, D., et al. Integrating the flow regime and water quality effects into a niche-based metacommunity dynamics model for river ecosystems. Journal of Environmental Management, 2023, 336: 117562.
https://doi.org/10.1016/j.jenvman.2023.117562
[41]  LIU, W., LIU, P., CHENG, L., et al. An analytic operating rule for reservoirs under the budyko “supply-demand” framework. Journal of Hydrology, 2023, 616: 128788.
https://doi.org/10.1016/j.jhydrol.2022.128788
[42]  叶松, 谭德宝, 张煜. 丹江口水库消落带土地利用现状调查及特点分析[J]. 长江科学院院报, 2016, 33(11): 17-20.
[43]  李伟萍, 曾源, 张磊, 等. 丹江口水库消落区土地覆被空间格局分析[J]. 国土资源遥感, 2011(4): 108-114.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413