全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

靶向冠状病毒核衣壳蛋白NTD-RNA位点的小分子抑制剂虚拟筛选
Virtual Screening of Anti-Coronavirus Small Molecule Inhibitors Targeting NTD-RNA of Nucleocapsid Protein

DOI: 10.12677/HJMCe.2024.122017, PP. 147-155

Keywords: 核衣壳蛋白,药效团模型,分子对接,虚拟筛选
Nucleocapsid Protein
, Pharmacophore Model, Molecule Docking, Virtual Screening

Full-Text   Cite this paper   Add to My Lib

Abstract:

核衣壳蛋白(Nucleocapsid Protein,N蛋白)是冠状病毒(CoVs)家族保守的结构蛋白,其N端结构域(NTD)与病毒RNA结合形成核糖核蛋白复合物(RNP),参与病毒复制与组装,已被认定为重要的抗冠状病毒药物靶点。以NTD-RNA结合位点为靶点,针对小分子片段库,开展基于计算机辅助药物设计方法的N蛋白抑制剂虚拟筛选。方法:建立基于受体结构的药效团模型,利用特征元素和测试集分子匹配程度选择最优模型,并运用基于受体和基于配体的方法以检验模型的可靠性。对小分子片段库进行基于Lipinski五规则、药效团模型和分子对接的虚拟筛选,筛选出可以干扰NTD与RNA结合的潜在N蛋白抑制剂。结果最佳药效团模型包含两个疏水特征和两个氢键受体,并筛选出药效团模型匹配值高、对接得分值排序靠前且结构新颖的2个化合物。结论:所筛选出的2个化合物可作为潜在的抑制剂以用于后续研究。
Objective: The nucleocapsid protein (N protein) is a conserved structural protein of corona viruses (CoVs). The N-terminal domain (NTD) of N protein binds to viral RNA to form ribonucleoprotein complexes (RNPs), providing a site for virus replication and participating in particle assembly. Therefore, the N protein has been considered as an important antiviral target. Based on the small molecular fragment database, computer-aided drug design method was employed to screen potential N protein inhibitors targeting the interface of NTD-RNA. Methods: Pharmacophore models were constructed based on the reported structure of N protein and the optimal one was selected by the matching degree of the feature elements and test sets. The reliability of the model was further confirmed using receptor-based and ligand-based methods. Lipinski’s five rules, pharmacophore model and molecular docking-based virtual screening were performed to identify potential N protein inhibitors interrupting the interaction of NTD and RNA. Results: The best pharmacophore model contained two hydrophobic features and two hydrogen bond acceptors, and 2 compounds with high pharmacophore model fit values and docking scores were screened. Conclusion: The 2compounds will be further studied as potential inhibitors of N protein.

References

[1]  Kesheh, M.M., Hosseini, P., Soltani, S. and Zandi, M. (2022) An Overview on the Seven Pathogenic Human Corona-viruses. Reviews in Medical Virology, 32, e2282.
https://doi.org/10.1002/rmv.2282
[2]  Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H. and Chen, S. (2020) Crystal Structure of SARS-CoV-2 Nucleocapsid Protein RNA Binding Domain Reveals Potential Unique Drug Targeting Sites. Acta Pharmaceutica Sinica. B, 10, 1228-1238.
https://doi.org/10.1016/j.apsb.2020.04.009
[3]  Tang, T.K., Wu, M.P., Chen, S.T., Hou, M.H., Hong, M.H., Pan, F.M., Yu, H.M., Chen, J.H., Yao, C.W. and Wang, A.H. (2005) Biochemical and Immunological Studies of Nucleocap-sid Proteins of Severe Acute Respiratory Syndrome and 229E Human Coronaviruses. Proteomics, 5, 925-937.
https://doi.org/10.1002/pmic.200401204
[4]  Bai, Z., Cao, Y., Liu, W. and Li, J. (2021) The SARS-CoV-2 Nu-cleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Miti-gation. Viruses, 13, 1115.
https://doi.org/10.3390/v13061115
[5]  Lu, X., Pan, J., Tao, J. and Guo, D. (2011) SARS-CoV Nucleocapsid Protein Antagonizes IFN-β Response by Targeting Initial Step of IFN-β Induction Pathway, and Its C-Terminal Region Is Critical for the Antagonism. Virus Genes, 42, 37-45.
https://doi.org/10.1007/s11262-010-0544-x
[6]  Peng, Y., Du, N., Lei, Y., Dorje, S., Qi, J., Luo, T., Gao, G. F. and Song, H. (2020) Structures of the SARS-CoV-2 Nucleocapsid and Their Perspectives for Drug Design. The EMBO Journal, 39, e105938.
https://doi.org/10.15252/embj.2020105938
[7]  Gerhard Wolber and Wolfgang Sippl, J.(2015) Chapter 21—Pharmacophore Identification and Pseudo-Receptor Modeling. Fourth Edition, The Practice of Medicinal Chemistry, 489-510.
https://doi.org/10.1016/B978-0-12-417205-0.00021-3
[8]  Wang, Y.T., Long, X.Y., Ding, X., Fan, S.R., Cai, J.Y., Yang, B.J., Zhang, X.F., Luo, R.H., Yang, L., Ruan, T., Ren, J., Jing, C.X., Zheng, Y.T., Hao, X.J. and Chen, D.Z. (2022)Novel Nucleocapsid Protein-Targeting Phenanthridine Inhibitors of SARS-CoV-2. European Journal of Me-dicinal Chemistry, 227, Article ID: 113966.
https://doi.org/10.1016/j.ejmech.2021.113966
[9]  Yadav, R., Imran, M., Dhamija, P., Suchal, K. and Handu, S. (2021) Virtual Screening and Dynamics of Potential Inhibitors Targeting RNA Binding Domain of Nucleocapsid Phos-phoprotein from SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39, 4433-4448.
https://doi.org/10.1080/07391102.2020.1778536
[10]  Dhankhar, P., Dalal, V., Singh, V., Tomar, S. and Kumar, P. (2022) Computational Guided Identification of Novel Potent Inhibitors of N-Terminal Domain of Nucleocapsid Pro-tein of Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Biomolecular Structure & Dynamics, 40, 4084-4099.
https://doi.org/10.1080/07391102.2020.1852968
[11]  Lin, S.Y., Liu, C.L., Chang, Y.M., Zhao, J., Perlman, S. and Hou, M.H. (2014) Structural Basis for the Identification of the N-Terminal Domain of Coronavirus Nu-cleocapsid Protein as an Antiviral Target. Journal of Medicinal Chemistry, 57, 2247-2257.
https://doi.org/10.1021/jm500089r
[12]  Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2001) Ex-perimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 46, 3-26.
https://doi.org/10.1016/S0169-409X(00)00129-0
[13]  Wu, G., Robertson, D.H., Brooks, C.L., 3rd and Vieth, M. (2003) Detailed Analysis of Grid-Based Molecular Docking: A Case Study of CDOCKER-A CHARMm-Based MD Docking Algorithm. Journal of Computational Chemistry, 24, 1549-1562.
https://doi.org/10.1002/jcc.10306

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413