全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fresnel Equations Derived Using a Non-Local Hidden-Variable Particle Theory

DOI: 10.4236/jmp.2024.156040, PP. 950-984

Keywords: Wave-Particle Duality, Optical Law, Fresnel Equation, Non-Local Hidden-Variable

Full-Text   Cite this paper   Add to My Lib

Abstract:

Problem: The Fresnel equations describe the proportions of reflected and transmitted light from a surface, and are conventionally derived from wave theory continuum mechanics. Particle-based derivations of the Fresnel equations appear not to exist. Approach: The objective of this work was to derive the basic optical laws from first principles from a particle basis. The particle model used was the Cordus theory, a type of non-local hidden-variable (NLHV) theory that predicts specific substructures to the photon and other particles. Findings: The theory explains the origin of the orthogonal electrostatic and magnetic fields, and re-derives the refraction and reflection laws including Snell’s law and critical angle, and the Fresnel equations for s and p-polarisation. These formulations are identical to those produced by electromagnetic wave theory. Contribution: The work provides a comprehensive derivation and physical explanation of the basic optical laws, which appears not to have previously been shown from a particle basis. Implications: The primary implications are for suggesting routes for the theoretical advancement of fundamental physics. The Cordus NLHV particle theory explains optical phenomena, yet it also explains other physical phenomena including some otherwise only accessible through quantum mechanics (such as the electron spin g-factor) and general relativity (including the Lorentz and relativistic Doppler). It also provides solutions for phenomena of unknown causation, such as asymmetrical baryogenesis, unification of the interactions, and reasons for nuclide stability/instability. Consequently, the implication is that NLHV theories have the potential to represent a deeper physics that may underpin and unify quantum mechanics, general relativity, and wave theory.

References

[1]  Pons, D.J., Pons, A.D., Pons, A.M. and Pons, A.J. (2012) Physics Essays, 25, 132-140.
https://doi.org/10.4006/0836-1398-25.1.132
[2]  Fresnel, A.-J. (2021) On the Calculation of the Tints That Polarization Develops in Crystalline Plates, & Postscript (Translated 2021 Putland, Gavin Richard). Zenodo, 1821(4561712).
https://doi.org/10.5281/zenodo.4561712
[3]  Miyazaki, D. (2014) Fresnel Equations. In: Ikeuchi, K., Ed., Computer Vision: A Reference Guide, Springer, Boston, 305-307.
https://doi.org/10.1007/978-0-387-31439-6_569
[4]  Starke, R. and Schober, G.A.H. (2018) Optik, 157, 275-286.
https://doi.org/10.1016/j.ijleo.2017.11.026
[5]  Rochford, K. (2002) Polarization and Polarimetry. In: Meyers, R.A., Ed., Encyclopedia of Physical Science and Technology, 3rd Edition, Academic Press, New York, 521-538.
https://doi.org/10.1016/B0-12-227410-5/00590-1
[6]  Novoselov, K.S., Mishchenko, A., Carvalho, A. and Castro Neto, A.H. (2016) Science, 353, aac9439.
https://doi.org/10.1126/science.aac9439
[7]  Tang, L. (2021) Optik, 245, Article ID: 167750.
https://doi.org/10.1016/j.ijleo.2021.167750
[8]  Ilhan, O.A., Manafian, J. and Shahriari, M. (2019) Computers & Mathematics with Applications, 78, 2429-2448.
https://doi.org/10.1016/j.camwa.2019.03.048
[9]  Ren, J., Ilhan, O.A., Bulut, H. and Manafian, J. (2021) Journal of Geometry and Physics, 164, Article ID: 104159.
https://doi.org/10.1016/j.geomphys.2021.104159
[10]  Alotaibi, H. (2021) Symmetry, 13, Article No. 2126.
https://doi.org/10.3390/sym13112126
[11]  Liu, J. (2015) Journal of Applied Mathematics and Physics, 3, 279-284.
https://doi.org/10.4236/jamp.2015.33041
[12]  Li, W.H. (2016) Journal of Discrete Mathematical Sciences and Cryptography, 19, 707-714.
https://doi.org/10.1080/09720529.2016.1178928
[13]  Liu, C., Shi, D. and Li, Z. (2023) Results in Physics, 54, Article ID: 107025.
https://doi.org/10.1016/j.rinp.2023.107025
[14]  Rinzel, J. and Keller, J.B. (1973) Biophysical Journal, 13, 1313-1337.
https://doi.org/10.1016/S0006-3495(73)86065-5
[15]  Colbeck, R. and Renner, R. (2011) Nature Communications, 2, Article No. 5.
https://doi.org/10.1038/ncomms1416
[16]  Taneco-Hernández, M.A., Morales-Delgado, V.F. and Gómez-Aguilar, J.F. (2019) Physica A: Statistical Mechanics and Its Applications, 521, 807-827.
https://doi.org/10.1016/j.physa.2019.01.105
[17]  Einstein, A., Podolsky, B. and Rosen, N. (1935) Physical Review, 47, 777-780.
https://doi.org/10.1103/PhysRev.47.777
[18]  Bohm, D. and Bub, J. (1966) Reviews of Modern Physics, 38, 453-469.
https://doi.org/10.1103/RevModPhys.38.453
[19]  Pons, D.J. (2020) Journal of Modern Physics, 11, 1560-1575.
https://doi.org/10.4236/jmp.2020.1110097
[20]  Pons, D.J. (2021) Journal of Modern Physics, No. 12, 1931-1953.
https://doi.org/10.4236/jmp.2021.1214110
[21]  Pons, D.J., Pons, A.D. and Pons, A.J. (2014) Applied Physics Research, 6, 28-46.
https://doi.org/10.5539/apr.v6n2p28
[22]  Pons, D.J. (2015) Applied Physics Research, 7, 14-26.
https://doi.org/10.5539/apr.v7n4p24
[23]  Pons, D.J., Pons, A.D. and Pons, A.J. (2015) Journal of Nuclear and Particle Physics, 5, 58-69.
[24]  Pons, D.J., Pons, A.D. and Pons, A.J. (2016) Journal of Modern Physics, 7, 1049-1067.
https://doi.org/10.4236/jmp.2016.710094
[25]  Pons, D.J. (2020) Journal of Modern Physics, 11, 1598-1619.
https://doi.org/10.4236/jmp.2020.1110100
[26]  Pons, D.J. (2023) Journal of Modern Physics, 14, 237-270.
https://doi.org/10.4236/jmp.2023.143017
[27]  Pons, D.J., Pons, A.D. and Pons, A.J. (2019) Journal of Modern Physics, 10, 835-860.
https://doi.org/10.4236/jmp.2019.107056
[28]  Pons, D.J., Pons, A.D. and Pons, A.J. (2014) Physics Essays, 27, 26-35.
https://doi.org/10.4006/0836-1398-27.1.26
[29]  Pons, D.J., Pons, A.D. and Pons, A.J. (2013) Applied Physics Research, 5, 107-126.
https://doi.org/10.5539/apr.v5n5107
[30]  Pons, D.J., Pons, A.D. and Pons, A.J. (2018) Journal of Modern Physics, 9, 500-523.
https://doi.org/10.4236/jmp.2018.93035
[31]  Pons, D.J., Pons, A.D. and Pons, A.J. (2017) Journal of Modern Physics, 8, 1257-1274.
https://doi.org/10.4236/jmp.2017.88082
[32]  Pons, D.J., Pons, A.D. and Pons, A.J. (2016) Applied Physics Research, 8, 111-121.
https://doi.org/10.5539/apr.v8n3p111
[33]  Hunsperger, R.G. (1995) Coupling between Waveguides. In: Integrated Optics: Theory and Technology, Springer, Berlin, 113-127.
https://doi.org/10.1007/978-3-662-03159-9_7
[34]  Makarov, D. (2022) Mathematics, 10, Article No. 4794.
https://doi.org/10.3390/math10244794
[35]  Foster, D.H., Cook, A.K. and Nöckel, J.U. (2007) Optics Letters, 32, 1764-1766.
https://pages.uoregon.edu/noeckel/gooshanchen/
https://doi.org/10.1364/OL.32.001764
[36]  Merano, M., Aiello, A., ’t Hooft, G.W., van Exter, M.P., Eliel, E.R. and Woerdman, J.P. (2007) Optics Express, 15, 15928-15934.
https://doi.org/10.1364/OE.15.015928
[37]  Nöckel, J.U. (2011) Microcavity Modes Created by Non-Specular Reflections. Micro-Optics and Quantum Chaos Group.
https://pages.uoregon.edu/noeckel/gooshanchen/
[38]  Pons, D.J. (2020) Optics, 1, 243-254.
http://viXra.org/abs/2009.0004
https://doi.org/10.3390/opt1030018
[39]  Thorn, J.J., Neel, M.S., Donato, V.W., Bergreen, G.S., Davies, R.E. and Beck, M. (2004) American Journal of Physics, 72, 1210-1219.
https://doi.org/10.1119/1.1737397
[40]  Pons, D.J. and Pons, A.D. (2013) The Open Astronomy Journal, 6, 77-89.
https://doi.org/10.2174/1874381101306010077
[41]  Pons, D.J., Pons, A.D. and Pons, A.J. (2013) Applied Physics Research, 5, 145-174.
https://doi.org/10.5539/apr.v5n6p145
[42]  Pons, D.J., Pons, A.D. and Pons, A.J. (2013) Applied Physics Research, 5, 23-47.
https://doi.org/10.5539/apr.v5n6p23
[43]  Pons, D.J., Pons, A.D. and Pons, A.J. (2014) Applied Physics Research, 6, 50-63.
https://doi.org/10.5539/apr.v6n3p50
[44]  Pons, D.J., Pons, A.D. and Pons, A.J. (2014) Journal of Modern Physics, 5, 1980-1994.
https://doi.org/10.4236/jmp.2014.517193
[45]  Pons, D.J., Pons, A.D. and Pons, A.J. (2015) Physics Research International, 2015, Article ID: 651361.
https://doi.org/10.1155/2015/651361
[46]  Pons, D.J., Pons, A.D. and Pons, A.J. (2015) Applied Physics Research, 7, 1-13.
https://doi.org/10.5539/apr.v7n2p1
[47]  Pons, D.J., Pons, A.D. and Pons, A.J. (2015) Applied Physics Research, 7, 1-11.
https://doi.org/10.5539/apr.v7n1p1
[48]  Pons, D.J., Pons, A.D. and Pons, A.J. (2015) Applied Physics Research, 7, 18-29.
https://doi.org/10.5539/apr.v7n3p18
[49]  Pons, D.J., Pons, A.D. and Pons, A.J. (2016) Journal of Modern Physics, 7, 1277-1295.
https://doi.org/10.4236/jmp.2016.710113
[50]  Hendren, W.R. (2001) Multilayer Optical Film Modeling. In: Buschow, K.H.J., et al., Eds., Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 5870-5876.
https://doi.org/10.1016/B0-08-043152-6/01022-6
[51]  Iga, K. (2003) Microoptics. In: Meyers, R.A., Ed., Encyclopedia of Physical Science and Technology, 3rd Edition, Academic Press, New York, 735-754.
https://doi.org/10.1016/B0-12-227410-5/00441-5
[52]  Wang, Q., Jing, J.-Y. and Cheng, Z. (2021) Chapter Eight. Long-Range Surface Plasmon Resonance and Its Biological Sensing Applications. In: Chen, Y.-P. and Ma, T.-F., Eds., Comprehensive Analytical Chemistry, Elsevier, Amsterdam, 277-338.
https://doi.org/10.1016/bs.coac.2021.08.002
[53]  Franceschetti, G. and Riccio, D. (2007) Chapter 4. Analytic Formulations of Electromagnetic Scattering. In: Franceschetti, G. and Riccio, D., Eds., Scattering, Natural Surfaces, and Fractals, Academic Press, Burlington, 115-141.
https://doi.org/10.1016/B978-012265655-2/50004-0
[54]  Marks, T.J. and Ratner, M.A. (1995) Angewandte Chemie International Edition, 34, 155-173.
https://doi.org/10.1002/anie.199501551
[55]  Lopez-Martinez, E., Gianolio, D., Garcia-Orrit, S., Vega-Mayoral, V., Cabanillas-Gonzalez, J., Sanchez-Cano, C. and Cortajarena, A.L. (2022) Advanced Optical Materials, 10, Article ID: 2101332.
https://doi.org/10.1002/adom.202101332
[56]  Mehrabpour, M., Shamlouei, H.R. and Bahrami, H. (2020) Journal of Molecular Modeling, 26, Article No. 306.
https://doi.org/10.1007/s00894-020-04565-4
[57]  Wu, W. and Liu, B. (2022) Materials Horizons, 9, 99-111.
https://doi.org/10.1039/D1MH01030A
[58]  Sliwa, M., Létard, S., Malfant, I., Nierlich, M., Lacroix, P.G., Asahi, T., Masuhara, H., Yu, P. and Nakatani, K. (2005) Chemistry of Materials, 17, 4727-4735.
https://doi.org/10.1021/cm050929o
[59]  Tang, C. (2021) Computational Modelling for the Optical Properties of Dye Molecules Adsorbed onto Metallic Nanoparticles. Te Herenga Waka-Victoria University of Wellington, Wellington.
https://doi.org/10.26686/wgtn.16557066.v1
[60]  Mirderikvand, F., Shamlouei, H.R. and Samiey, B. (2022) Diamond and Related Materials, 129, Article ID: 109381.
https://doi.org/10.1016/j.diamond.2022.109381
[61]  Shiraogawa, T. and Ehara, M. (2020) The Journal of Physical Chemistry C, 124, 13329-13337.
https://doi.org/10.1021/acs.jpcc.0c01730

Full-Text

Contact Us

[email protected]

QQ:3279437679

WhatsApp +8615387084133