全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advanced Computing for Cardiovascular Disease Prediction

DOI: 10.4236/ojs.2024.143011, PP. 228-242

Keywords: Machine Learning, Deep Learning, Classification, Performance Matrix, Accuracy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Developing a predictive model for detecting cardiovascular diseases (CVDs) is crucial due to its high global fatality rate. With the advancements in artificial intelligence, the availability of large-scale data, and increased access to computational capability, it is feasible to create robust models that can detect CVDs with high precision. This study aims to provide a promising method for early diagnosis by employing various machine learning and deep learning techniques, including logistic regression, decision trees, random forest classifier, extreme gradient boosting (XGBoost), and a sequential model from Keras. Our evaluation identifies the random forest classifier as the most effective model, achieving an accuracy of 0.91, surpassing other machine learning and deep learning approaches. Close behind are XGBoost (accuracy: 0.90), decision tree (accuracy: 0.86), and logistic regression (accuracy: 0.70). Additionally, our deep learning sequential model demonstrates promising classification performance, with an accuracy of 0.80 and a loss of 0.425 on the validation set. These findings underscore the potential of machine learning and deep learning methodologies in advancing cardiovascular disease prediction and management strategies.

References

[1]  Du, X., Su, X., Zhang, W., Yi, S., Zhang, G., Jiang, S., Li, H., Li, S. and Xia, F. (2021) Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Analytical Chemistry, 94, 442-463.
https://doi.org/10.1021/acs.analchem.1c04476
[2]  Fernández-Ruiz, I. (2019) Artificial Intelligence to Improve the Diagnosis of Cardiovascular Diseases. Nature Reviews Cardiology, 16, Article No. 133.
https://doi.org/10.1038/s41569-019-0158-5
[3]  Cercato, C. and Fonseca, F.A. (2019) Cardiovascular Risk and Obesity. Diabetology & Metabolic Syndrome, 11, Article No. 74.
https://doi.org/10.1186/s13098-019-0468-0
[4]  Dalal, S., Goel, P., Onyema, E., Alharbi, A., Mahmoud, A., Algarni, M. and Awal, H. (2023) Application of Machine Learning for Cardiovascular Disease Risk Prediction. Computational Intelligence and Neuroscience, 2023, Article ID: 9418666.
https://doi.org/10.1155/2023/9418666
[5]  Pal, M., Parija, S., Panda, G., Dhama, K. and Mohapatra, R. (2022) Risk Prediction of Cardiovascular Disease Using Machine Learning Classifiers. Open Medicine, 17, 1100-1113.
https://doi.org/10.1515/med-2022-0508
[6]  Awuah, R., Afrifa-Anane, E. and Agyemang, C. (2015) Cardiovascular Diseases and Established Risk Factors in Low-and Middle-Income Countries. In: de Graft Aikins, A. and Agyemang, C., Eds., Chronic Non-Communicable Diseases in Low and Middle-Income Countries, CABI Digital Library, Wallingford, 1-13.
https://doi.org/10.1079/9781780643328.0001
[7]  Hasani, W., Muhamad, N., Hanis, T., Maamor, N., Chen, X., Omar, M., Cheng Kueh, Y., Abd Karim, Z., Hassan, M. and Musa, K. (2023) The Global Estimate of Premature Cardiovascular Mortality: A Systematic Review and Meta-Analysis of Age-Standardized Mortality Rate. BMC Public Health, 23, Article No. 1561.
https://doi.org/10.1186/s12889-023-16466-1
[8]  Itchhaporia, D. (2022) Artificial Intelligence in Cardiology. Trends in Cardiovascular Medicine, 32, 34-41.
https://doi.org/10.1016/j.tcm.2020.11.007
[9]  Mathur, P., Srivastava, S., Xu, X. and Mehta, J. (2020) Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clinical Medicine Insights: Cardiology, 14.
https://doi.org/10.1177/1179546820927404
[10]  Muhammad, Y., Tahir, M., Hayat, M. and Chong, K. (2020) Early and Accurate Detection and Diagnosis of Heart Disease Using Intelligent Computational Model. Scientific Reports, 10, Article No. 19747.
https://doi.org/10.1038/s41598-020-76635-9
[11]  Regar, E. (2011) Invasive Imaging Technologies: Can We Reconcile Light and Sound? Journal of Cardiovascular Medicine, 12, 562-570.
https://doi.org/10.2459/JCM.0b013e3283492b5a
[12]  Groepenhoff, F., Klaassen, R., Valstar, G., Bots, S., Onland-Moret, N., Den Ruijter, H., Leiner, T. and Eikendal, A. (2021) Evaluation of Non-Invasive Imaging Parameters in Coronary Microvascular Disease: A Systematic Review. BMC Medical Imaging, 21, Article No. 5.
https://doi.org/10.1186/s12880-020-00535-7
[13]  Karatzia, L., Aung, N. and Aksentijevic, D. (2022) Artificial Intelligence in Cardiology: Hope for the Future and Power for the Present. Frontiers in Cardiovascular Medicine, 9, Article 945726.
https://doi.org/10.3389/fcvm.2022.945726
[14]  Chattu, V. (2021) A Review of Artificial Intelligence, Big Data, and Blockchain Technology Applications in Medicine and Global Health. Big Data and Cognitive Computing, 5, Article 41.
https://doi.org/10.3390/bdcc5030041
[15]  Ahmed, Z., Mohamed, K., Zeeshan, S. and Dong, X. (2020) Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database, 2020, baaa010.
https://doi.org/10.1093/database/baaa010
[16]  DeGroat, W., Abdelhalim, H., Patel, K., Mendhe, D., Zeeshan, S. and Ahmed, Z. (2024) Discovering Biomarkers Associated and Predicting Cardiovascular Disease with High Accuracy Using a Novel Nexus of Machine Learning Techniques for Precision Medicine. Scientific Reports, 14, Article No. 1.
https://doi.org/10.1038/s41598-023-50600-8
[17]  Drożdż, K., Nabrdalik, K., Kwiendacz, H., Hendel, M., Olejarz, A., Tomasik, A., Bartman, W., Nalepa, J., Gumprecht, J. and Lip, G. (2022) Risk Factors for Cardiovascular Disease in Patients with Metabolic-Associated Fatty Liver Disease: A Machine Learning Approach. Cardiovascular Diabetology, 21, Article No. 240.
https://doi.org/10.1186/s12933-022-01672-9
[18]  Ambekar, S. and Phalnikar, R. (2018) Disease Risk Prediction by Using Convolutional Neural Network. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, 16-18 August 2018, 1-5.
https://doi.org/10.1109/ICCUBEA.2018.8697423
[19]  Larroza, A., Materka, A., López-Lereu, M.P., Monmeneu, J.V., Bodíand, V. and Moratal, D. (2017) Differentiation between Acute and Chronic Myocardial Infarction by Means of Texture Analysis of Late Gadolinium Enhancement and Cine Cardiac Magnetic Resonance Imaging. European Journal of Radiology, 92, 78-83.
https://doi.org/10.1016/j.ejrad.2017.04.024
[20]  Oyewola, D., Dada, E. and Misra, S. (2024) Diagnosis of Cardiovascular Diseases by Ensemble Optimization Deep Learning Techniques. International Journal of Healthcare Information Systems and Informatics. 19, 1-21.
https://doi.org/10.4018/IJHISI.334021
[21]  Alaa, A., Bolton, T., Di Angelantonio, E., Rudd, J. and Schaar, M. (2019) Cardiovascular Disease Risk Prediction Using Automated Machine Learning: A Prospective Study of 423,604 UK Biobank Participants. PLOS ONE, 14, e0213653.
https://doi.org/10.1371/journal.pone.0213653
[22]  Musa, A. (2013) Comparative Study on Classification Performance between Support Vector Machine and Logistic Regression. International Journal of Machine Learning and Cybernetics, 4, 13-24.
https://doi.org/10.1007/s13042-012-0068-x
[23]  Nashif, S., Raihan, M., Islam, M. and Imam, M. (2018) Heart Disease Detection by Using Machine Learning Algorithms and a Real-Time Cardiovascular Health Monitoring System. World Journal of Engineering and Technology, 6, 854-873.
https://doi.org/10.4236/wjet.2018.64057
[24]  Baghdadi, N., Farghaly Abdelaliem, S., Malki, A., Gad, I., Ewis, A. and Atlam, E. (2023) Advanced Machine Learning Techniques for Cardiovascular Disease Early Detection and Diagnosis. Journal of Big Data, 10, Article No. 144.
https://doi.org/10.1186/s40537-023-00817-1
[25]  Kecman, V. (2005) Support Vector Machines—An Introduction. In: Wang, L., Ed., Support Vector Machines: Theory and Applications, Springer, Berlin, 1-47.
https://doi.org/10.1007/10984697_1
[26]  Uddin, K., Ripa, R., Yeasmin, N., Biswas, N. and Dey, S. (2023) Machine Learning-Based Approach to the Diagnosis of Cardiovascular Vascular Disease Using a Combined Dataset. Intelligence-Based Medicine, 7, Article 100100.
https://doi.org/10.1016/j.ibmed.2023.100100
[27]  Pal, M. and Parija, S. (2021) Prediction of Heart Diseases Using Random Forest. Journal of Physics: Conference Series, 1817, Article 012009.
https://doi.org/10.1088/1742-6596/1817/1/012009
[28]  Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785
[29]  Ogunleye, A. and Wang, Q. (2019) XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17, 2131-2140.
https://doi.org/10.1109/TCBB.2019.2911071
[30]  Osman, A., Ahmed, A., Chow, M., Huang, Y. and El-Shafie, A. (2021) Extreme Gradient Boosting (Xgboost) Model to Predict the Groundwater Levels in Selangor Malaysia. Ain Shams Engineering Journal, 12, 1545-1556.
https://doi.org/10.1016/j.asej.2020.11.011
[31]  Agatonovic-Kustrin, S. and Beresford, R. (2000) Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research. Journal of Pharmaceutical and Biomedical Analysis, 22, 717-727.
https://doi.org/10.1016/S0731-7085(99)00272-1
[32]  Dahal, K., Dahal, J., Banjade, H. and Gaire, S. (2021) Prediction of Wine Quality Using Machine Learning Algorithms. Open Journal of Statistics, 11, 278-289.
https://doi.org/10.4236/ojs.2021.112015
[33]  Aggarwal, S., Bhatia, M., Madaan, R. and Pandey, H. (2021) Optimized Sequential Model for Plant Recognition in Keras. IOP Conference Series: Materials Science and Engineering, 1022, Article 012118.
https://doi.org/10.1088/1757-899X/1022/1/012118

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413