全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Geomaterials  2024 

Comparative Analysis of Statistical Thickness Models for the Determination of the External Specific Surface and the Surface of the Micropores of Materials: The Case of a Clay Concrete Stabilized Using Sugar Cane Molasses

DOI: 10.4236/gm.2024.142002, PP. 13-28

Keywords: Statistical Thickness Model, External Specific Surface, Microporous Surface, Clay Concrete, Molasses

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.

References

[1]  Moulin, L. (2018) Vapothermolyse des pneus usagés. Valorisation du noir de carbone récupéré, relation procédé-produit. Doctoral Thesis, Université de Toulouse, France.
[2]  Ngouallat, M.N. (2023) Étude des mécanismes internes lies à la stabilisation des sols fins argileux à l’aide de la mélasse de canne à sucre. Thèse de Doctorat, Université Marien-Ngouabi, Brazzaville.
[3]  Ngouallat, M.N., Malanda, N., NzabaMadila, E.E. and Louzolo-Kimbembe, P. (2022) Adsorption Isotherm of BET Nitrogen of ConcreteswithConsolidated Soil by Sugar Cane Molasses. Journal of Materials Science and Engineering B, 12, 78-96.
https://doi.org/10.17265/2161-6221/2022.7-9.002
[4]  Malanda, N., Mfoutou, N., Madila, E. and Louzolo-Kimbembe, P. (2022) Microstructure of Fine Clay Soils Stabilized with Sugarcane Molasses. Open Journal of Civil Engineering, 12, 247-269.
[5]  Zheng, Y.J. (2008) Evaluation of a New Method to Estimate the Micropore Volume and External Surface Areaof Single-walled Carbon Nanotubes. Master’s Thesis, University of Tennessee, Knoxville.
https://trace.tennessee.edu/utk_gradthes/3673
https://doi.org/10.4236/ojce.2022.122015
[6]  Webb, P.A. and Orr, C. (1997) Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, Norcross, GA, USA.
[7]  Siham, T. and Amina, G. (2018) Développement des zéolithes à porosité hiérarchisée: adsorbants pour la dépollution en solution aqueuse. Mémoire de Master, Université Mouloud Mammeride Tizi-Ouzou, Algérie.
[8]  Kevin, J. (2008) Characterization of Powders and Porous Materials with Pharmaceutical Excipient Case Studies. Micromeritics Instrument Corporation, Norcross, GA, USA.
[9]  Boukabous, H. (2017) Étude de l’élimination d’un colorant en présence de catalyseurs à base de TiO2 supporté sur un silico-aluminophosphate microporeux. Université Abdelhamid Ibn Badis, Mostaganem.
[10]  Emeline, R. (2013) Purification, recuit et désassemblage d’échantillons de nanotubes de carbone: propriétés structurales et caractérisations de surface. Thèse de doctorat, Université de Lorraine, France.
[11]  ASTM (2014) Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption.
https://www.astm.org/d6556-21.html
[12]  Ghania, H. (2018) Cours des Phénomènes de surface et catalyse hétérogène. Université Hassiba Benbouali de Chlef, Ouled Fares.
[13]  Shi, K.H., Santiso, E.E. and Gubbins, K.E. (2021) Current Advances in Characterization of Nano-Porous Materials: Pore Size Distribution and Surface Area. In: Moreno-Piraján, J.C., Giraldo-Gutierrez, L. and Gómez-Granados, F., eds., Porous Materials. Engineering Materials. Springer, Cham.
https://doi.org/10.1007/978-3-030-65991-2_12
[14]  Bertrand, F. and Maumy, M. (2008) Choix du modèle. IRMA, Université Louis Pasteur, Strasbourg, France.
[15]  Ngouallat, M.N., Malanda, N. and Louzolo-Kimbembe, P. (2020) Analyse macroscopique des effets de la mélasse de canne à sucre sur le sol fin argileux. Revue RAMReSSciences Appliquées et de l’Ingénieur, 2, 24-31.
[16]  Malanda, N., Louzolo-Kimbembe, P. and Tamba-Nsemi, Y.D. (2017) Etude des caractéristiques mécaniques d’une brique en terre stabilisée à l’aide de la mélasse de canne à sucre. Revue du CAMESSciences Appliquées et de l’ingénieur Cames, 2, 1-9.
[17]  Magee, R.W. (1995) Evaluation of the External Surface Area of Carbon Black by Nitrogen Adsorption. Rubber Chemistry and Technology, 68, 590-600.
[18]  Kuila, U. and Prasad, M. (2011) Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 61, 341-362.
https://doi.org/10.2118/146869-MS

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413