全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Modeling and Technico-Economic Analysis of a Hybrid Energy Production System for Self-Consumption: Case of Rural Area in the Comoros

DOI: 10.4236/jpee.2024.125002, PP. 24-59

Keywords: Hybrid System, Rural Area Electrification, Comoros, Techno-Economic Analysis, PV-Wind-Diesel-Battery, Meteorological Data, HOMER Energy Pro

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study aims to provide electricity to a remote village in the Union of Comoros that has been affected by energy problems for over 40 years. The study uses a 50 kW diesel generator, a 10 kW wind turbine, 1500 kW photovoltaic solar panels, a converter, and storage batteries as the proposed sources. The main objective of this study is to conduct a detailed analysis and optimization of a hybrid diesel and renewable energy system to meet the electricity demand of a remote area village of 800 to 1500 inhabitants located in the north of Ngazidja Island in Comoros. The study uses the Hybrid Optimization Model for Electric Renewable (HOMER) Pro to conduct simulations and optimize the analysis using meteorological data from Comoros. The results show that hybrid combination is more profitable in terms of margin on economic cost with a less expensive investment. With a diesel cost of $1/L, an average wind speed of 5.09 m/s and a solar irradiation value of 6.14 kWh/m2/day, the system works well with a proportion of renewable energy production of 99.44% with an emission quantity of 1311.407 kg/year. 99.2% of the production comes from renewable sources with an estimated energy surplus of 2,125,344 kWh/year with the cost of electricity (COE) estimated at $0.18/kWh, presenting a cost-effective alternative compared to current market rates. These results present better optimization of the used hybrid energy system, satisfying energy demand and reducing the environmental impact.

References

[1]  Ma, W.W., Rasul, M.G., Liu, G., Li, M. and Tan, X.H. (2016) Climate Change Impacts on Techno-Economic Performance of Roof PV Solar System in Australia. Renewable Energy, 88, 430-438.
https://doi.org/10.1016/j.renene.2015.11.048
[2]  Vidal, Y., Acho, L., Luo, N., Zapateiro De La Hoz, M.F. and Pozo, F. (2010) Power Control Design for Variable-Speed Wind Turbines.
[3]  Touili, S., Alami Merrouni, A., El Hassouani, Y., Amrani, A. and Rachidi, S. (2020) Analysis of the Yield and Production Cost of Large-Scale Electrolytic Hydrogen from Different Solar Technologies and under Several Moroccan Climate Zones. International Journal of Hydrogen Energy, 45, 26785-26799.
https://doi.org/10.1016/j.ijhydene.2020.07.118
[4]  IEA (n.d.) Perspectives Énergétiques Mondiales 2019, World Energy Outlook—Topics.
https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926-35307b418cdb/WEO2019-free.pdf
[5]  IEA (n.d.) Perspectives Énergétiques Mondiales 2020, World Energy Outlook—Topics.
https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf
[6]  Norouzi, N., Bozorgian, A. and Dehghani, M.A. (2020) Best Option of Investment in Renewable Energy: A Multicriteria Decision-Making Analysis for Iranian Energy Industry. Journal of Environmental Assessment Policy and Management, 22, Article ID: 2250001.
https://doi.org/10.1142/S1464333222500016
[7]  Norouzi, N. (2021) The Pahlev Reliability Index: A Measurement for the Resilience of Power Generation Technologies versus Climate Change. Nuclear Engineering and Technology, 53, 1658-1663.
https://doi.org/10.1016/j.net.2020.10.013
[8]  Krohn, S., Morthorst, P.-E. and Awerbuch, S. (N.D.) The Economics of Wind Energy.
[9]  Johnson, L. (2014) Geographies of Securitized Catastrophe Risk and the Implications of Climate Change. Economic Geography, 90, 155-185.
https://doi.org/10.1111/ecge.12048
[10]  Aguilar, M.M. (N.D.) Production de Biobutanol A Partir de Lignocellulose: Un Nouveau Procede Thermochimique.
[11]  Aguilar-Jimenez, J.A., Hernandez-Callejo, L., Alonso-Gomez, V., Velazquez, N., Lopez-Zavala, R., Acuña, A. and Mariano-Hernandez, D. (2020) Techno-Economic Analysis of Hybrid PV/T Systems under Different Climate Scenarios and Energy Tariffs. Solar Energy, 212, 191-202.
https://doi.org/10.1016/j.solener.2020.10.079
[12]  Mohd Noor, M.S., Adzis, Z., Arief, Y.Z. and Muhamad, N.A. (2016) Feasibility Analysis of Stand-Alone Renewable Energy Supply for Telecommunication Tower Using Homer. Applied Mechanics and Materials, 818, 223-227.
https://doi.org/10.4028/www.scientific.net/AMM.818.223
[13]  Gonzalez-Salazar, M. and Poganietz, W.R. (2021) Evaluating the Complementarity of Solar, Wind and Hydropower to Mitigate the Impact of El Niño Southern Oscillation in Latin America. Renewable Energy, 174, 453-467.
https://doi.org/10.1016/j.renene.2021.04.048
[14]  Graabak, I. and Korpås, M. (2016) Balancing of Variable Wind and Solar Production in Continental Europe with Nordic Hydropower—A Review of Simulation Studies. Energy Procedia, 87, 91-99.
https://doi.org/10.1016/j.egypro.2015.12.362
[15]  Yao, Y., Xu, J.-H. and Sun, D.-Q. (2021) Untangling Global Levelised Cost of Electricity Based on Multi-Factor Learning Curve for Renewable Energy: Wind, Solar, Geothermal, Hydropower and Bioenergy. Journal of Cleaner Production, 285, Article ID: 124827.
https://doi.org/10.1016/j.jclepro.2020.124827
[16]  Thirunavukkarasu, M. and Sawle, Y. (2021) A Comparative Study of the Optimal Sizing and Management of Off-Grid Solar/Wind/Diesel and Battery Energy Systems for Remote Areas. Frontiers in Energy Research, 9, Article ID: 752043.
https://www.frontiersin.org/articles/10.3389/fenrg.2021.752043
https://doi.org/10.3389/fenrg.2021.752043
[17]  Maoulida, F., Rabah, D., Ganaoui, M.E. and Aboudou, K.M. (2021) PV-Wind-Diesel System for Energy Supply on Remote Area Applied for Telecommunication Towers in Comoros. Open Journal of Energy Efficiency, 10, 50-72.
https://doi.org/10.4236/ojee.2021.102004
[18]  Maoulida, F., Aboudou, K.M., Djedjig, R. and El Ganaoui, M. (n.d.) Feasibility Study for a Hybrid Power Plant (PV-Wind-Diesel-Storage) Connected to the Electricity Grid. Fluid Dynamics & Materials Processing, 18, 1607-1617.
[19]  Garg, V.K. and Sharma, S. (N.D.) Techno-Economic Analysis of a Microgrid for a Small Community. In: Marriwala, N., et al., Eds., Soft Computing for Intelligent Systems, Springer, Berlin, 505-517.
https://link.springer.com/chapter/10.1007/978-981-16-1048-6_40
[20]  Olatomiwa, L., Mekhilef, S., Ismail, M.S. and Moghavvemi, M. (2016) Energy Management Strategies in Hybrid Renewable Energy Systems: A Review. Renewable and Sustainable Energy Reviews, 62, 821-835.
https://doi.org/10.1016/j.rser.2016.05.040
[21]  Kassim, M., Fahad, M. and El Ganaoui, M. (2020) Pv-Wind Hybrid Energy System for Application of Building in Rural Areas in Comoros.
[22]  Fahad, M., Kassim, M., Rakoto, J. and El Ganaoui, M. (2020) Dimensionnement d’un systeme hybride pv/generateur diesel pour l’alimentation electrique d’un pylone de telecommunication aux comores.
[23]  Aboudou, K.M. and Ganaoui, M.E. (2019) Design of a Hybrid System for Rural Area Electricity Supply in Comoros. Journal of Power and Energy Engineering, 7, 59-78.
https://doi.org/10.4236/jpee.2019.72005
[24]  Kassim, M. and El Ganaoui, M. (2018) Design of Hybrid Power System for a Power Supply in Rural Areas in Comoros.
[25]  IRENA (2021) World Energy Transitions Outlook: 1.5 ˚C Pathway. International Renewable Energy Agency, Abu Dhabi.
https://www.irena.org/publications
[26]  Agence Internationale des Energies Renouvelables (n.d.) Renewable Capacity Statistics 2019.
[27]  (2018) Irena afrique, l’afrique et les energies renouvelables: La voie vers la croissance durable.
https://publications/2013/feb/lafrique-et-les-nergies-renouvelables--la-voie-vers-la-croissance-durable
[28]  Burke, P.J. and Kurniawati, S. (2018) Electricity Subsidy Reform in Indonesia: Demand-Side Effects on Electricity Use. Energy Policy, 116, 410-421.
https://doi.org/10.1016/j.enpol.2018.02.018
[29]  Gouvernement de L’Union des Comores (2020) Rapport national volontaire de l’union des comores au forum politique de haut niveau sur le developpement durable.
[30]  Fahad, M., Kassim, M., Djedjig, R. and Ganaoui, M. (2022) Feasibility Study for a Hybrid Power Plant (PV-Wind-Diesel-Storage) Connected to the Electricity Grid. Fluid Dynamics and Materials Processing, 18, 1607-1617.
https://doi.org/10.32604/fdmp.2022.023199
[31]  Maoulida, F. (2020) Developpement d’un systeme hybride de generation d’energie en site isole pour la telecommunication et realisation d’un regulateur de charge solaire, memoire de master 2, d’ingenierie en énergies renouvelables, universite d’antananarivo.
[32]  Alturki, F.A. and Dayil, A.B. (2020) Techno-Economic Evaluation and Optimization of Grid Connected PV and Wind Generating System for Riyadh City. Journal of Power and Energy Engineering, 8, 46-63.
https://doi.org/10.4236/jpee.2020.812004
[33]  Mandal, S., Das, B.K. and Hoque, N. (2018) Optimum Sizing of a Stand-Alone Hybrid Energy System for Rural Electrification in Bangladesh. Journal of Cleaner Production, 200, 12-27.
https://doi.org/10.1016/j.jclepro.2018.07.257
[34]  Alsamamra, H.R. and Shoqeir, J.A.H. (2020) Assessment of Wind Power Potential at Eastern-Jerusalem, Palestine. Open Journal of Energy Efficiency, 9, 131-149.
https://doi.org/10.4236/ojee.2020.94009
[35]  Weinand, J.M., Scheller, F. and McKenna, R. (2020) Reviewing Energy System Modelling of Decentralized Energy Autonomy. Energy, 203, Article ID: 117817.
https://doi.org/10.1016/j.energy.2020.117817
[36]  Yang, Y., Javanroodi, K. and Nik, V.M. (2022) Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties. Energies, 15, Article No. 302.
https://doi.org/10.3390/en15010302
[37]  Kassim, M. and El Ganaoui, M. (2019) Design of a Hybrid System for Rural Area Electricity Supply in Comoros. Journal of Power, and Energy Engineering, 7, 59-78.
https://doi.org/10.4236/jpee.2019.72005
[38]  Halabi, L.M., Mekhilef, S., Olatomiwa, L. and Hazelton, J. (2017) Performance Analysis of Hybrid PV/Diesel/Battery System Using HOMER: A Case Study Sabah, Malaysia. Energy Conversion and Management, 144, 322-339.
https://doi.org/10.1016/j.enconman.2017.04.070
[39]  Riayatsyah, T.M.I., Geumpana, T.A., Fattah, I.M.R. and Mahlia, T.M.I. (2022) Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro. Sustainability, 14, Article No. 9846.
https://doi.org/10.3390/su14169846
[40]  Geyken, C. (N.D.) Analysis to Achieve a High Penetration of Renewable Energies in MW-Scale Electricity Microgrids with the Case Study of an Island in the Pacific.
[41]  Dufo-LÓPez, R. and Bernal-AgustÍN, J.L. (2005) Design and Control Strategies of PV-Diesel Systems Using Genetic Algorithms. Solar Energy, 79, 33-46.
https://doi.org/10.1016/j.solener.2004.10.004
[42]  Chao, J.L. (2021) Experts’ Predictions for Future Wind Energy Costs Drop Significantly. News Center.
https://newscenter.lbl.gov/2021/04/15/experts-predictions-for-future-wind-energy-costs-drop-significantly/
[43]  Homer Energy (n.d.) HOMER—Logiciel de conception de systemes de generation hybrides renouvelables et distribues.
https://www.homerenergy.com/
[44]  Manmadharao, S., Chaitanya, S.N.V.S.K., Venkateswara Rao, B. and Srinivasarao, G. (2019) Design and Optimization of Grid Integrated Solar Energy System Using HOMER GRID Software. 2019 Innovations in Power and Advanced Computing Technologies (I-PACT), Vellore, 22-23 March 2019, 1-5.
https://doi.org/10.1109/i-PACT44901.2019.8960118
[45]  Ghatak, A., Alfred, R.B. and Singh, R.R. (2021) Optimization for Electric Vehicle Charging Station Using Homer Grid. 2021 Innovations in Power and Advanced Computing Technologies (I-PACT), Kuala Lumpur, 27-29 November 2021, 1-7.
https://doi.org/10.1109/i-PACT52855.2021.9696626
[46]  Sen, R. and Bhattacharyya, S.C. (2014) Off-Grid Electricity Generation with Renewable Energy Technologies in India: An Application of HOMER. Renewable Energy, 62, 388-398.
https://doi.org/10.1016/j.renene.2013.07.028
[47]  Shahzad, M.K., Zahid, A., Ur Rashid, T., Rehan, M.A., Ali, M. and Ahmad, M. (2017) Techno-Economic Feasibility Analysis of a Solar-Biomass Off Grid System for the Electrification of Remote Rural Areas in Pakistan Using HOMER Software. Renewable Energy, 106, 264-273.
https://doi.org/10.1016/j.renene.2017.01.033
[48]  Bahramara, S., Moghaddam, M.P. and Haghifam, M.R. (2016) Optimal Planning of Hybrid Renewable Energy Systems Using HOMER: A Review. Renewable and Sustainable Energy Reviews, 62, 609-620.
https://doi.org/10.1016/j.rser.2016.05.039
[49]  Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S.R., Adnan, M., Ali, S.F. and Khokhar, K.S. (2018) Techno Economic Analysis of a Wind-Photovoltaic-Biomass Hybrid Renewable Energy System for Rural Electrification: A Case Study of Kallar Kahar. Energy, 148, 208-234.
https://doi.org/10.1016/j.energy.2018.01.133
[50]  Wikipedia (2020) Position geographique des comores.
https://fr.wikipedia.org
[51]  Wikipedia (2020) Demographie des comores (Pays).
https://fr.wikipedia.org
[52]  UNECA BSR-EA (2018) Gouvernement de l’union des comores, developpement des statistiques du bilan energetique et d’un modele de systeme energetique pour l’union des comores.
https://archive.uneca.org
[53]  Boukhchana, Y., Fellah, A. and Ben Brahim, A. (2011) Modelisation de la phase generation d’un cycle de refrigeration par absorption solaire a fonctionnement intermittent. International Journal of Refrigeration, 34, 159-167.
https://doi.org/10.1016/j.ijrefrig.2010.08.002
[54]  (2020) Solargis des Comores, Solar Resource Maps of Comoros.
https://solargis.com/maps-and-gis-data/download/comoros
[55]  Benalcazar, P., Suski, A. and Kamiński, J. (2020) Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands. Energies, 13, Article No. 3933.
https://doi.org/10.3390/en13153933
[56]  El-Houari, H., Allouhi, A., Rehman, S., Buker, M.S., Kousksou, T., Jamil, A. and El Amrani, B. (2019) Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification. Energies, 12, Article No. 4735.
https://doi.org/10.3390/en12244735
[57]  Said, Z., Arora, S. and Bellos, E. (2018) A Review on Performance and Environmental Effects of Conventional and Nanofluid-Based Thermal Photovoltaics. Renewable and Sustainable Energy Reviews, 94, 302-316.
https://doi.org/10.1016/j.rser.2018.06.010
[58]  Mehta, S. and Basak, P. (2022) A Novel Design Economic Assessment and Fuzzy-Based Technical Validation of an Islanded Microgrid: A Case Study on Load Model of Kibber Village in Himachal Pradesh. International Transactions on Electrical Energy Systems, 2022, e9639253.
https://doi.org/10.1155/2022/9639253
[59]  Homer Energy Pro (n.d.) How HOMER Creates the Generator Efficiency Curve.
https://support.ul-renewables.com/homer-manuals-pro/generator_fuel_curve_slope.html
[60]  Kassim, M., Fahad, M. and El Ganaoui, M. (2020) Pv-Wind Hybrid Energy System for Application of Building in Rural Areas in Comoros.
[61]  Homer Energy Pro (n.d.) How HOMER Calculates the PV Array Power Output.
https://support.ul-renewables.com/homer-manuals-pro/how_homer_calculates_the_pv_array_power_output.html
[62]  Brihmat, F. and Mekhtoub, S. (N.D.) PV Cell Temperature/PV Power Output Relationships Homer Methodology Calculation.
[63]  Haffaf, A., Lakdja, F., Meziane, R. and Abdeslam, D.O. (2021) Study of Economic and Sustainable Energy Supply for Water Irrigation System (WIS). Sustainable Energy, Grids and Networks, 25, Article ID: 100412.
https://doi.org/10.1016/j.segan.2020.100412
[64]  Lare, Y., Sagna, K. and Razak Ali-Tagba, A. (2021) Optimal Design and Performance Analysis of a Grid Connected Photovoltaic System in Togo. AJER, 9, 56-74.
https://doi.org/10.12691/ajer-9-1-6
[65]  Homer Energy Pro (n.d.) How HOMER Calculates Wind Turbine Power Output.
https://support.ul-renewables.com/homer-manuals-pro/wind_resource_variation_with_height.html
[66]  Delannoy, L., Puri, S., Perera, A.T.D., Coccolo, S., Mauree, D. and Scartezzini, J.-L. (2018) Climate Impact and Energy Sustainability of Future European Neighborhoods. 2018 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), Rome, 24-26 September 2018, 1-6.
https://doi.org/10.1109/EFEA.2018.8617066
[67]  Homer Energy Pro (n.d.) Battery Bank Life.
https://support.ul-renewables.com/homer-manuals-pro/how_homer_calculates_the_maximum_battery_charge_power.html
[68]  Homer Energy Pro (n.d.) Levelized Cost of Energy.
https://support.ul-renewables.com/homer-manuals-pro/levelized_cost_of_energy.html
[69]  El-Houari, H., Allouhi, A., Rehman, S., Buker, M.S., Kousksou, T., Jamil, A. and El Amrani, B. (2020) Feasibility Evaluation of a Hybrid Renewable Power Generation System for Sustainable Electricity Supply in a Moroccan Remote Site. Journal of Cleaner Production, 277, Article ID: 123534.
https://doi.org/10.1016/j.jclepro.2020.123534
[70]  Homer Energy Pro (n.d.) Annualized Cost.
https://support.ul-renewables.com/homer-manuals-pro/annualized_cost.html

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133