全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

染料废水处理技术
Dyes Wastewater Treatment Technology

DOI: 10.12677/hjcet.2024.143021, PP. 187-200

Keywords: 染料废水,生物法,化学法,物理法
Dye Wastewater
, Biological, Chemical, Physical Methods

Full-Text   Cite this paper   Add to My Lib

Abstract:

染料废水通常具有高色度、高化学需氧量(COD)和高生物毒性等特点。因此为了减少环境危害和生态毒性,研究人员开发了许多技术来处理染料废水,针对染料废水的特性,主要的处理方法有生物法、化学法和物理法。本文综述了染料废水的危害和主要的处理技术,以此为后续研究提供一定的理论指导。
Dye wastewater is usually characterized by high color, high chemical oxygen demand (COD) and high biological toxicity. Therefore, in order to reduce the environmental hazards and ecotoxicity, researchers have developed many techniques to treat dye wastewater, and the main treatment methods for the characteristics of dye wastewater are biological, chemical and physical methods. In this review, the hazards of dye wastewater and the main treatment technologies are summarized to provide some theoretical guidance for subsequent research.

References

[1]  Samsami, S., Mohamadizaniani, M., Sarrafzadeh, M.-H., et al. (2020) Recent Advances in the Treatment of Dye-Containing Wastewater from Textile Industries: Overview and Perspectives. Process Safety and Environmental Protection, 143, 138-163.
https://doi.org/10.1016/j.psep.2020.05.034
[2]  Kishor, R., Purchase, D., Saratale, G.D., et al. (2021) Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. Journal of Environmental Chemical Engineering, 9, Article 105012.
https://doi.org/10.1016/j.jece.2020.105012
[3]  Kallawar, G.A. and Bhanvase, B.A. (2023) A Review on Existing and Emerging Approaches for Textile Wastewater Treatments: Challenges and Future Perspectives. Environmental Science and Pollution Research, 31, 1748-1789.
https://doi.org/10.1007/s11356-023-31175-3
[4]  王艳辉, 陈利科, 钟云飞. 基于MBR生物接触氧化的印刷废水处理工艺研究[J]. 数字印刷, 2020(1): 77-110.
[5]  刘俊逸, 黄青, 李杰, 等. 印染工业废水处理技术的研究进展[J]. 水处理技术, 2021, 47(3): 1-6.
[6]  Liu, P., Yang, X., Chen, W. and Hao, Y. (2024) Preparation of the Modified Chitosan Flocculant Introduced Acryloyloxyethyl Trimethyl Ammonium Chloride and 2-Acrylamido-2-Methyl Propane Sulfonic Acid for the Treatment of Papermaking Wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 682, Article 132934.
https://doi.org/10.1016/j.colsurfa.2023.132934
[7]  Esmaeeli, A., Sarrafzadeh, M.-H., Zeighami, S., et al. (2023) A Comprehensive Review on Pulp and Paper Industries Wastewater Treatment Advances. Industrial & Engineering Chemistry Research, 62, 8119-8145.
https://doi.org/10.1021/acs.iecr.2c04393
[8]  Rajoria, S., Vashishtha, M. and Sangal, V.K. (2022) Treatment of Electroplating Industry Wastewater: A Review on the Various Techniques. Environmental Science and Pollution Research, 29, 72196-72246.
https://doi.org/10.1007/s11356-022-18643-y
[9]  Chalaris, M., Gkika, D.A., Tolkou, A.K. and Kyzas, G.Z. (2023) Advancements and Sustainable Strategies for the Treatment and Management of Wastewaters from Metallurgical Industries: An Overview. Environmental Science and Pollution Research, 30, 119627-119653.
https://doi.org/10.1007/s11356-023-30891-0
[10]  Winkler, M.-K.H. and Van Loosdrecht, M.C.M. (2022) Intensifying Existing Urban Wastewater. Science, 375, 377-378.
https://doi.org/10.1126/science.abm3900
[11]  Jorge, A.M.S., Athira, K.K., Alves, M.B., et al. (2023) Textile Dyes Effluents: A Current Scenario and the Use of Aqueous Biphasic Systems for the Recovery of Dyes. Journal of Water Process Engineering, 55, Article 104125.
https://doi.org/10.1016/j.jwpe.2023.104125
[12]  Fei, Y. and Hu, Y.H. (2023) Recent Progress in Removal of Heavy Metals from Wastewater: A Comprehensive Review. Chemosphere, 335, Article 139077.
https://doi.org/10.1016/j.chemosphere.2023.139077
[13]  Ghaffar, I., Hussain, A., Hasan, A., et al. (2023) Microalgal-Induced Remediation of Wastewaters Loaded with Organic and Inorganic Pollutants: An Overview. Chemosphere, 320, Article 137921.
https://doi.org/10.1016/j.chemosphere.2023.137921
[14]  Almroth, B.C., Cartine, J., J?nander, C., et al. (2021) Assessing the Effects of Textile Leachates in Fish Using Multiple Testing Methods: From Gene Expression to Behavior. Ecotoxicology and Environmental Safety, 207, Article 1111523.
https://doi.org/10.1016/j.ecoenv.2020.111523
[15]  Sudarshan, S., Harikrishnan, S., RathiBhuvaneswari, G., et al. (2023) Impact of Textile Dyes on Human Health and Bioremediation of Textile Industry Effluent Using Microorganisms: Current Status and Future Prospects. Journal of Applied Microbiology, 134, Article lxac064.
https://doi.org/10.1093/jambio/lxac064
[16]  Shabir, M., Yasin, M., Hussain, M., et al. (2022) A Review on Recent Advances in the Treatment of Dye-Polluted Wastewater. Journal of Industrial and Engineering Chemistry, 112, 1-19.
https://doi.org/10.1016/j.jiec.2022.05.013
[17]  Su, C.X.-H., Low, L.W., Teng, T.T, et al. (2016) Combination and Hybridisation of Treatments in Dye Wastewater Treatment: A Review. Journal of Environmental Chemical Engineering, 4, 3618-3631.
https://doi.org/10.1016/j.jece.2016.07.026
[18]  Islam, T., Repon, R., Islam, T., et al. (2022) Impact of Textile Dyes on Health and Ecosystem: A Review of Structure, Causes, and Potential Solutions. Environmental Science and Pollution Research, 30, 9207-9242.
https://doi.org/10.1007/s11356-022-24398-3
[19]  Farias, N.O.D., Albuquerque, A.F.D., dos Santos, A., et al. (2023) Is Natural Better? An Ecotoxicity Study of Anthraquinone Dyes. Chemosphere, 343, Article 140174.
https://doi.org/10.1016/j.chemosphere.2023.140174
[20]  Keshava, C., Nicolai, S., Vulimiri, S.V., et al. (2023) Application of Systematic Evidence Mapping to Identify Available Data on the Potential Human Health Hazards of Selected Market-Relevant Azo Dyes. Environment International, 176, Article 107952.
https://doi.org/10.1016/j.envint.2023.107952
[21]  朱杰, 杨旭军, 陆永明. 含染料废水处理中微生物的应用[J]. 山西化工, 2023, 43(5): 228-229 236.
[22]  Zhang, B., Fan, J., Li, W., et al. (2023) Low Salinity Enhances Azo Dyes Degradation in Aerobic Granular Sludge Systems: Performance and Mechanism Analysis. Bioresource Technology, 372, Article 128678.
https://doi.org/10.1016/j.biortech.2023.128678
[23]  Frijters, C.T.M.J., Vos, R.H., Scheffer, G., et al. (2006) Decolorizing and Detoxifying Textile Wastewater, Containing both Soluble and Insoluble Dyes, in a Full Scale Combined Anaerobic/Aerobic System. Water Research, 40, 1249-1257.
https://doi.org/10.1016/j.watres.2006.01.013
[24]  Wang, Y.-Q., Ding, J., Pang, J.-W., et al. (2024) Promotion of Anaerobic Biodegradation of Azo Dye RR2 by Different Biowaste-Derived Biochars: Characteristics and Mechanism Study by Machine Learning. Bioresource Technology, 396, Article 130383.
https://doi.org/10.1016/j.biortech.2024.130383
[25]  Artifon, W., Mazur, L.P., De Souza, A.A.U., et al. (2022) Production of Bioflocculants from Spent Brewer’s Yeast and Its Application in the Treatment of Effluents with Textile Dyes. Journal of Water Process Engineering, 49, Article 102997.
https://doi.org/10.1016/j.jwpe.2022.102997
[26]  Vinayagam, V., Palani, K.N., Ganesh, S., et al. (2024) Recent Developments on Advanced Oxidation Processes for Degradation of Pollutants from Wastewater with Focus on Antibiotics and Organic Dyes. Environmental Research, 240, Article 117500.
https://doi.org/10.1016/j.envres.2023.117500
[27]  Rodríguez-Narváez, O.M., Picos, A.R., Bravo-Yumi, N., et al. (2021) Electrochemical Oxidation Technology to Treat Textile Wastewaters. Current Opinion in Electrochemistry, 29, Article 100806.
https://doi.org/10.1016/j.coelec.2021.100806
[28]  Khan, M.D., Singh, A., Khan, M.Z., et al. (2023) Current Perspectives, Recent Advancements, and Efficiencies of Various Dye-Containing Wastewater Treatment Technologies. Journal of Water Process Engineering, 53, Article 103579.
https://doi.org/10.1016/j.jwpe.2023.103579
[29]  崔玉民, 殷榕灿. 染料废水处理方法研究进展[J]. 科技导报, 2021, 39(18): 79-87.
[30]  Ariza-Pineda, F.J., Macías-Quiroga, I.F., Hinojosa-Zambrano, D.F., et al. (2023) Treatment of Textile Wastewater Using the Co(II)/NaHCO3/H2O2 Oxidation System. Heliyon, 9, E22444.
https://doi.org/10.1016/j.heliyon.2023.e22444
[31]  Patel, R.P., Pataniya, P.M., Siraj, S., et al. (2024) Simultaneous Production of Green Hydrogen and Decontamination of Dye Wastewater Using WSe2-CuO/Graphite Electrochemical Cell. International Journal of Hydrogen Energy, 55, 815-827.
https://doi.org/10.1016/j.ijhydene.2023.11.246
[32]  Wu, W., Qi, J., Fang, J., et al. (2022) One-Pot Preparation of Lignin-Based Cationic Flocculant and Its Application in Dye Wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 654, Article 130082.
https://doi.org/10.1016/j.colsurfa.2022.130082
[33]  Moradihamedani, P. (2021) Recent Advances in Dye Removal from Wastewater by Membrane Technology: A Review. Polymer Bulletin, 79, 2603-2631.
https://doi.org/10.1007/s00289-021-03603-2
[34]  Nawaz, H., Umar, M., Nawaz, I., et al. (2021) Hybrid PVDF/PANI Membrane for Removal of Dyes from Textile Wastewater. Advanced Engineering Materials, 24, Article 2100719.
https://doi.org/10.1002/adem.202100719
[35]  Adesanmi, B.M., et al. (2022) Comparison of Dye Wastewater Treatment Methods: A Review. GSC Advanced Research and Reviews, 10, 126-137.
https://doi.org/10.30574/gscarr.2022.10.2.0054
[36]  Kumar, N., Pandey, A., Rosy, et al. (2023) A Review on Sustainable Mesoporous Activated Carbon as Adsorbent for Efficient Removal of Hazardous Dyes from Industrial Wastewater. Journal of Water Process Engineering, 54, Article 104054.
https://doi.org/10.1016/j.jwpe.2023.104054
[37]  刘源, 张娜, 刘群, 等. 阳离子染料废水处理技术研究进展[J]. 净水技术, 2023, 42(4): 39-51.
[38]  Cao, Y., Yang, L., Liu, F., et al. (2024) Adsorption Experiments and Mechanisms of Methylene Blue on Activated Carbon from Garden Waste via Deep Eutectic Solvents Coupling KOH Activation. Biomass and Bioenergy, 182, Article 107074.
https://doi.org/10.1016/j.biombioe.2024.107074
[39]  Barman, M.K., Bhattarai, A. and Saha, B. (2023) Applications of Ion Exchange Resins in Environmental Remediation. Vietnam Journal of Chemistry, 61, 533-550.
https://doi.org/10.1002/vjch.202300027
[40]  Wawrzkiewicz, M. and Kucharczyk, A. (2023) Adsorptive Removal of Direct Azo Dyes from Textile Wastewaters Using Weakly Basic Anion Exchange Resin. International Journal of Molecular Sciences, 24, Article 4886.
https://doi.org/10.3390/ijms24054886
[41]  Hassan, M.M. and Carr, C.M. (2018) A Critical Review on Recent Advancements of the Removal of Reactive Dyes from Dyehouse Effluent by Ion-Exchange Adsorbents. Chemosphere, 209, 201-219.
https://doi.org/10.1016/j.chemosphere.2018.06.043
[42]  Rao, W., Piliouras, P., Wang, X., et al. (2020) Zwitterionic Dye Rhodamine B (RhB) Uptake on Different Types of Clay Minerals. Applied Clay Science, 197, Article 105790.
https://doi.org/10.1016/j.clay.2020.105790
[43]  李娟. 水凝胶吸附材料处理染料废水的研究进展[J]. 针织工业, 2022(9): 73-77.
[44]  Huang, Q., Zhou, Y., Fu, Z. and Zhu, J. (2023) Preparation of an Injectable Hydrogel Reinforced by Graphene Oxide and Its Application in Dye Wastewater Treatment. Journal of Materials Science, 58, 3117-3133.
https://doi.org/10.1007/s10853-023-08213-z

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413