全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同形貌MoO3气体传感器的制备及对丙酮的气敏性能研究
Preparation of MoO3 Gas Sensors with Different Morphologies and Study on Gas Sensitivity to Acetone

DOI: 10.12677/jsta.2024.123054, PP. 495-503

Keywords: 金属半导体氧化物,水热法,丙酮,MoO3,气体传感器
Metal Semiconductor Oxide
, Hydrothermal Method, Acetone, MoO3, Gas Sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用水热法,以钼酸钠和钼酸铵为钼源,双氧水、盐酸两种不同介质分别制备了纳米带状和纳米片状MoO3。通过XRD,SEM表征和两种不同形貌MoO3对100 ppm丙酮的气敏性能测试显示两种形状的MoO3气体传感器的结晶度和纯度都比较高。纳米带状MoO3长约数10微米,宽约165 nm。对丙酮的响应是2.84,最佳工作温度是320℃,响应–恢复时间为9 s/46 s。纳米片状MoO3长约1.471 μm,宽约为2.266 μm,厚度约为300 nm。对丙酮的响应是2.97,最佳工作温度是360℃,响应–恢复时间为13 s/98 s。综合比较纳米带形状的MoO3对丙酮有更好的性能,更适合制作丙酮传感器。
In this study, nano-strips and nano-flakes MoO3 were prepared by hydrothermal method using sodium molybdate and ammonium molybdate as molybdenum sources, hydrogen peroxide and hydrochloric acid as different media. Through XRD, SEM characterization and gas sensitive performance test of two different morphologies of MoO3 on 100 ppm acetone, the crystallinity and purity of the three shapes of MoO3 gas sensors are relatively high. The nano-strip MoO3 is about tens of microns long and 165 nm wide. The response to acetone is 2.84, the optimal operating temperature is 320?C, and the response-recovery time is 9 s/46 s. The nano-flake MoO3 is about 1.471 μm long, 2.266 μm wide and 300 nm thick. The response to acetone is 2.97, the optimal operating temperature is 360?C, and the response-recovery time is 13 s/98 s. MoO3 with the shape of nano-strips has better performance against acetone and is more suitable for making acetone sensor.

References

[1]  Ali, A., Shoeb, M., Li, B., et al. (2022) Photocatalytic Degradation of Antibiotic Drug and Dye Pollutants under Visible-Light Irradiation by Reduced Graphene Oxide Decorated MoO3/TiO2 Nanocomposite. Materials Science in Semiconductor Processing, 150, Article ID 106974.
https://doi.org/10.1016/j.mssp.2022.106974
[2]  Ai, T., Li, J., Kang, J., Yin, Y., Bao, S. and Lu, J. (2022) Adjustable P-N Transition Behavior Based on MoO3-Decorated Hollow α-Fe2O3 for Highly Hydrogen-Selective Sensors. International Journal of Energy Research, 46, 16751-16761.
https://doi.org/10.1002/er.8336
[3]  Ali, S. and Farrukh, M.A. (2017) Effect of Calcination Temperature on the Structural, Thermodynamic, and Optical Properties of MoO3 Nanoparticles. Journal of the Chinese Chemical Society, 65, 276-288.
https://doi.org/10.1002/jccs.201700163
[4]  Alkallas, F.H., Ben Gouider Trabelsi, A., Shkir, M., et al. (2022) Enhanced Room Temperature Ammonia Gas Sensing Properties of Fe-Doped MoO3 Thin Films Fabricated Using Nebulizer Spray Pyrolysis. Nanomaterials, 12, 2797.
https://doi.org/10.3390/nano12162797
[5]  Al-Namshah, K.S. and Mohamed, R.M. (2020) Decoration of MoO3 Nanoparticles by MWCNTs Driven Visible Light for the Reduction of Cr(VI). Ceramics International, 46, 6914-6919.
https://doi.org/10.1016/j.ceramint.2019.11.187
[6]  Avani, A.V. and Anila, E.I. (2022) Recent Advances of MoO3 Based Materials in Energy Catalysis: Applications in Hydrogen Evolution and Oxygen Evolution Reactions. International Journal of Hydrogen Energy, 47, 20475-20493.
https://doi.org/10.1016/j.ijhydene.2022.04.252
[7]  Cai, Z.X., Na, J., Lin, J., Alshehri, A.A., Alzahrani, K.A., Alghamdi, Y.G., et al. (2020) Hierarchical Tubular Architecture Constructed by Vertically Aligned CoS2-MoS2 Nanosheets for Hydrogen Evolution Electrocatalysis. Chemistry, 26, 6195-6204.
https://doi.org/10.1002/chem.201905123
[8]  Chaudhary, V. and Nehra, S.P. (2021) Pt-Sensitized MoO3/Mpg-CN Mesoporous Nanohybrid: A Highly Sensitive VOC Sensor. Microporous and Mesoporous Materials, 315, Article ID 110906.
https://doi.org/10.1016/j.micromeso.2021.110906
[9]  Choi, S.J., Lee, I., Jang, B.H., Youn, D.Y., Ryu, W.H., Park, C.O., et al. (2013) Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube Networks as a Sensing Layer of Acetone in Exhaled Breath. Analytical Chemistry, 85, 1792-1806.
https://doi.org/10.1021/ac303148a
[10]  Dong, X., Han, Q., Kang, Y., Li, H., Huang, X., Fang, Z., et al. (2022) Rational Construction and Triethylamine Sensing Performance of Foam Shaped α-MoO3-SnS2 Nanosheets. Chinese Chemical Letters, 33, 567-572.
https://doi.org/10.1016/j.cclet.2021.06.022
[11]  Fu, H., Yang, X., Wu, Z., et al. (2022) Gas-Sensing Performance of In2O3-MoO3 Hollow Core-Shell Nanospheres Prepared by a Two-Step Hydrothermal Method. Sensors and Actuators B: Chemical, 352, Article ID 131007.
https://doi.org/10.1016/j.snb.2021.131007

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413